383
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Production of bioactive recombinant monoclonal antibody fragment in periplasm of Escherichia coli expression system

&

References

  • Patil, R. S.; Anupa, A.; Gupta, J. A.; Rathore, A. S. Challenges in Expression and Purification of Functional Fab Fragments in E. coli: Current Strategies and Perspectives. Fermentation 2022, 8, 175. DOI: 10.3390/fermentation8040175.
  • Priyanka,.; Rathore, A. S. A Novel Strategy for Efficient Expression of an Antibody Fragment in Escherichia coli: Ranibizumab as a Case Study. J. Chem. Technol. Biotechnol. 2021, 97, 42–54. DOI: 10.1002/jctb.6883.
  • Rosano, G. L.; Ceccarelli, E. A. Recombinant Protein Expression in Escherichia coli: Advances and Challenges. Front. Microbiol. 2014, 5, 172. DOI: 10.3389/fmicb.2014.00172.
  • Kang, T. H.; Seong, B. L. Solubility, Stability, and Avidity of Recombinant Antibody Fragments Expressed in Microorganisms. Front. Microbiol. 2020, 11, 1927. DOI: 10.3389/fmicb.2020.01927.
  • Sandomenico, A.; Sivaccumar, J. P.; Ruvo, M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int. J. Mol. Sci. 2020, 21, 6324. DOI: 10.3390/ijms21176324.
  • Hsu, C. C.; Thomas, O. R.; Overton, T. W. Periplasmic Expression in and Release of Fab Fragments from Escherichia coli Using Stress Minimization. J. Chem. Technol. Biotechnol. 2016, 91, 815–822. DOI: 10.1002/jctb.4672.
  • Kumar, D.; Batra, J.; Komives, C.; Rathore, A. S. QbD Based Media Development for the Production of Fab Fragments in E. coli. Bioengineering 2019, 6, 29. DOI: 10.3390/bioengineering6020029.
  • Strocchi, M.; Ferrer, M.; Timmis, K. N.; Golyshin, P. N. Low Temperature-Induced Systems Failure in Escherichia coli: Insights from Rescue by Cold-Adapted Chaperones. Proteomics 2006, 6, 193–206. DOI: 10.1002/pmic.200500031.
  • Mühlmann, M.; Forsten, E.; Noack, S.; Büchs, J. Optimizing Recombinant Protein Expression via Automated Induction Profiling in Microtiter Plates at Different Temperatures. Microb. Cell Fact. 2017, 16, 220. DOI: 10.1186/s12934-017-0832-4.
  • Shirano, Y.; Shibata, D. Low Temperature Cultivation of Escherichia coli Carrying a Rice Lipoxygenase L-2 cDNA Produces a Soluble and Active Enzyme at a High Level. FEBS Lett. 1990, 271, 128–130. DOI: 10.1016/0014-5793(90)80388-y.
  • Vasina, J. A.; Baneyx, F. Expression of Aggregation-Prone Recombinant Proteins at Low Temperatures: A Comparative Study of the Escherichia coli cspA and Tac Promoter Systems. Protein Expr. Purif. 1997, 9, 211–218. DOI: 10.1006/prep.1996.0678.
  • Sørensen, H. P.; Mortensen, K. K. Soluble Expression of Recombinant Proteins in the Cytoplasm of Escherichia coli. Microb. Cell Fact. 2005, 4, 1. DOI: 10.1186/1475-2859-4-1.
  • Srivastava, P.; Bhattacharaya, P.; Pandey, G.; Mukherjee, K. J. Overexpression and Purification of Recombinant Human Interferon alpha2b in Escherichia coli. Protein Expr. Purif. 2005, 41, 313–322. DOI: 10.1016/j.pep.2004.12.018.
  • Peti, W.; Page, R. Strategies to Maximize Heterologous Protein Expression in Escherichia coli with Minimal Cost. Protein Expr. Purif. 2007, 51, 1–10. DOI: 10.1016/j.pep.2006.06.024.
  • Huang, L.; Wang, Q.; Jiang, S.; Zhou, Y.; Zhang, G.; Ma, Y. Improved Extracellular Expression and High-Cell-Density Fed-Batch Fermentation of Chitosanase from Aspergillus fumigatus in Escherichia coli. Bioprocess Biosyst. Eng. 2016, 39, 1679–1687. DOI: 10.1007/s00449-016-1643-4.
  • Balderas-Hernández, V. E.; Paz-Maldonado, L. M. T.; Medina-Rivero, E. Periplasmic Expression and Recovery of Human Interferon Gamma in Escherichia coli. Protein Expression Purif. 2008, 59, 169–174.
  • Alonso Villela, S. M.; Kraïem, H.; Bouhaouala-Zahar, B.; Bideaux, C.; Aceves Lara, C. A.; Fillaudeau, L. A Protocol for Recombinant Protein Quantification by Densitometry. Microbiologyopen 2020, 9, 1175–1182. DOI: 10.1002/mbo3.1027.
  • Hochgräfe, F.; Mostertz, J.; Pöther, D. C.; Becher, D.; Helmann, J. D.; Hecker, M. S-Cysteinylation is a General Mechanism for Thiol Protection of Bacillus subtilis Proteins after Oxidative Stress. J. Biol. Chem. 2007, 282, 25981–25985. DOI: 10.1074/jbc.C700105200.
  • Devarie, N. O.; Baez, J. A.; Reisz, C.; Furdui, M. Mass Spectrometry in Studies of Protein Thiol Chemistry and Signaling: Opportunities and Caveats. Free Radic. Biol. Med. 2015, 80, 191–211. DOI: 10.1016/j.freeradbiomed.2014.09.016.
  • Abdelaal, A. S.; Yazdani, S. S. A Genetic Toolkit for Co-Expression of Multiple Proteins of Diverse Physiological Implication. Biotechnol. Rep. (Amst) 2021, 32, e00692. DOI: 10.1016/j.btre.2021.e00692.
  • Son, Y. J.; Ryu, A. J.; Li, L.; Han, N. S.; Jeong, K. J. Development of a High-Copy Plasmid for Enhanced Production of Recombinant Proteins in Leuconostoc citreum. Microb. Cell Fact. 2016, 15, 12. DOI: 10.1186/s12934-015-0400-8.
  • McQuillen, K.; Roberts, R. B.; Britten, R. J. Synthesis of Nascent Protein by Ribosomes in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1959, 45, 1437–1447. DOI: 10.1073/pnas.45.9.1437.
  • Bremer, H.; Yuan, D. RNA Chain Growth-Rate in Escherichia coli. J. Mol. Biol. 1968, 38, 163–180. DOI: 10.1016/0022-2836(68)90404-x.
  • Herendeen, S. L.; Van-Bogelen, R. A.; Neidhardt, F. C. Levels of Major Proteins of Escherichia coli during Growth at Different Temperatures. J. Bacteriol. 1979, 139, 185–194. DOI: 10.1128/jb.139.1.185-194.1979.
  • Farewell, A.; Neidhardt, F. C. Effect of Temperature on In Vivo Protein Synthetic Capacity in Escherichia coli. J. Bacteriol. 1998, 180, 4704–4710. DOI: 10.1128/JB.180.17.4704-4710.1998.
  • Francis, D. M.; Page, R. Strategies to Optimize Protein Expression in E. coli. Curr. Protoc. 2010, 24, 1–29.
  • Friedman, H.; Lu, P.; Rich, A. Temperature Control of Initiation of Protein Synthesis in Escherichia coli. J. Mol. Biol. 1971, 61, 105–121.
  • Rinas, U.; Hoffmann, F. Selective Leakage of Host-Cell Proteins during High-Cell-Density Cultivation of Recombinant and Non-Recombinant Escherichia coli. Biotechnol. Prog. 2004, 20, 679–687.
  • Ryals, J.; Little, R.; Bremer, H. Temperature Dependence of RNA Synthesis Parameters in Escherichia coli. J. Bacteriol. 1982, 151, 879–887. DOI: 10.1128/jb.151.2.879-887.1982.
  • Dragosits, M.; Frascotti, G.; Bernard-Granger, L. Influence of Growth Temperature on the Production of Antibody Fab Fragments in Different Microbes: A Host Comparative Analysis. Biotechnol. Progr. 2011, 38, 38–46.
  • Talaei, A.; Mazaheri, S.; Bayat, E.; Bakhshandeh, B.; Sabzalinejad, M.; Damough, S.; Mahboudi, F.; Nematollahi, L.; Talebkhan, Y. Production of Soluble and Functional Anti-TNF-α Fab′ Fragment in Cytoplasm of E. coli: Investigating the Effect of Process Conditions on Cellular Biomass and Protein Yield Using Response Surface Methodology. Protein J. 2021, 40, 786–798. DOI: 10.1007/s10930-021-09996-3.
  • Kulmala, A.; Huovinen, T.; Lamminmäki, U. Effect of DNA Sequence of Fab Fragment on Yield Characteristics and Cell Growth of E. coli. Sci. Rep. 2017, 7, 3796. DOI: 10.1038/s41598-017-03957-6.
  • Rodriguez, C.; Nam, D. H.; Kruchowy, E.; Ge, X. Efficient Antibody Assembly in E. coli Periplasm by Disulfide Bond Folding Factor Co-Expression and Culture Optimization. Appl. Biochem. Biotechnol. 2017, 183, 520–529. DOI: 10.1007/s12010-017-2502-8.
  • Mazaheri, S.; Talebkhan, Y.; Mahboudi, F. Improvement of Certolizumab Fab′ Properties by PASylation Technology. Sci. Rep. 2020, 10, 13. DOI: 10.1038/s41598-020-74549-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.