108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Combination of engineering the substrate and Ca2+ binding domains of heparinase I to improve the catalytic activity

, , &

References

  • Yang, V. C.; Linhardt, R. J.; Bernstein, H.; Cooney, C. L.; Langer, R. Purification and Characterization of Heparinase from Flavobacterium Heparinum. J. Biol. Chem. 1985, 260, 1849–1857. DOI: 10.1016/S0021-9258(18)89671-5.
  • Ernst, S.; Langer, R.; Cooney, C. L.; Sasisekharan, R. Enzymatic Degradation of Glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 387–444. DOI: 10.3109/10409239509083490.
  • Bhushan, I.; Alabbas, A.; Sistla, J. C.; Saraswat, R.; Desai, U. R.; Gupta, R. B. Heparin Depolymerization by Immobilized Heparinase: A Review. Int. J. Biol. Macromol. 2017, 99, 721–730. DOI: 10.1016/j.ijbiomac.2017.03.036.
  • Zhang, C.; Tang, F.; Zhang, J.; Cao, J.; Li, H.; Liu, C. Uncovering the Detailed Mode of Cleavage of Heparinase I toward Structurally Defined Heparin Oligosaccharides. Int. J. Biol. Macromol. 2019, 141, 756–764. DOI: 10.1016/j.ijbiomac.2019.08.260.
  • Przybylski, C.; Bonnet, V.; Vivès, R. R. A Microscale Double Labelling of GAG Oligosaccharides Compatible with Enzymatic Treatment and Mass Spectrometry. Chem. Commun. 2019, 55, 4182–4185. DOI: 10.1039/C9CC00254E.
  • Linhardt, R. J.; Cooney, C. L.; Tapper, D.; Zannetos, C. A.; Larsen, A. K.; Langer, R. An Immobilized Microbial Heparinase for Blood Deheparinization. Appl. Biochem. Biotechnol. 1984, 9, 41–55. DOI: 10.1007/BF02798373.
  • Ameer, G. A.; Harmon, W.; Sasisekharan, R.; Langer, R. Investigation of a Whole Blood Fluidized Bed Taylor-Couette Flow Device for Enzymatic Heparin Neutralization. Biotechnol. Bioeng. 1999, 62, 602–608. DOI: 10.1002/(sici)1097-0290(19990305)62:5<602:aid-bit12>3.0.co;2-m.
  • Alekseeva, A.; Urso, E.; Mazzini, G.; Naggi, A. Heparanase as an Additional Tool for Detecting Structural Peculiarities of Heparin Oligosaccharides. Molecules. 2019, 24, 4403. DOI: 10.3390/molecules24234403.
  • Pervin, A.; Gallo, C.; Jandik, K. A.; Han, X. J.; Linhardt, R. J. Preparation and Structural Characterization of Large Heparin-Derived Oligosaccharides. Glycobiology. 1995, 5, 83–95. DOI: 10.1093/glycob/5.1.83.
  • Ye, F.; Kuang, Y.; Chen, S.; Zhang, C.; Chen, Y.; Xing, X.-H. Characteristics of Low Molecular Weight Heparin Production by an Ultrafiltration Membrane Bioreactor Using Maltose Binding Protein Fused Heparinase I. Biochem. Eng. J. 2009, 46, 193–198. DOI: 10.1016/j.bej.2009.05.007.
  • Korir, A. K.; Larive, C. K. Advances in the Separation, Sensitive Detection, and Characterization of Heparin and Heparan Sulfate. Anal. Bioanal. Chem. 2009, 393, 155–169. DOI: 10.1007/s00216-008-2412-2.
  • Zhang, C.; Yang, B.-C.; Liu, W.-T.; Li, Z.-Y.; Song, Y.-J.; Zhang, T.-C.; Luo, X.-G. Structure-Based Engineering of Heparinase I with Improved Specific Activity for Degrading Heparin. BMC Biotechnol. 2019, 19, 59. DOI: 10.1186/s12896-019-0553-3.
  • Sasisekharan, R.; Leckband, D.; Godavarti, R.; Venkataraman, G.; Cooney, C. L.; Langer, R. Heparinase I from Flavobacterium Heparinum: The Role of the Cysteine Residue in Catalysis as Probed by Chemical Modification and Site-Directed Mutagenesis. Biochemistry. 1995, 34, 14441–14448. DOI: 10.1021/bi00044a022.
  • Sasisekharan, R.; Venkataraman, G.; Godavarti, R.; Ernst, S.; Cooney, C. L.; Langer, R. Heparinase I from Flavobacterium Heparinum. Mapping and Characterization of the Heparin Binding Domain. J. Biol. Chem. 1996, 271, 3124–3131. DOI: 10.1074/jbc.271.6.3124.
  • Liu, C.-Y.; Su, W.-B.; Guo, L.-B.; Zhang, Y.-W. Cloning, Expression, and Characterization of a Novel Heparinase I from Bacteroides Eggerthii. Prep. Biochem. Biotechnol. 2020, 50, 477–485. DOI: 10.1080/10826068.2019.1709977.
  • Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. DOI: 10.1016/0010-4655(95)00042-E.
  • Waterhouse, A.; Procter, J.; Martin, D.; Clamp, M.; Barton, G. Jalview Version 2: A Multiple Sequence Alignment and Analysis Workbench. Bioinformatics. 2009, 25, 1189–1191. DOI: 10.1093/bioinformatics/btp033.
  • Ho, S. N.; Hunt, H. D.; Horton, R. M.; Pullen, J. K.; Pease, L. R. Site-Directed Mutagenesis by Overlap Extension Using the Polymerase Chain Reaction. Gene. 1989, 77, 51–59. DOI: 10.1016/0378-1119(89)90358-2.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Bernstein, H.; Yang, V. C.; Cooney, C. L.; Langer, R. Immobilized Heparin Lyase System for Blood Deheparinization. Methods Enzymol. 1988, 137, 515–529. DOI: 10.1016/0076-6879(88)58073-4.
  • Ma, D.; Xin, Y.; Guo, Z.; Shi, Y.; Zhang, L.; Li, Y.; Gu, Z.; Ding, Z.; Shi, G. Ancestral Sequence Reconstruction and Spatial Structure Analysis Guided Alteration of Longer-Chain Substrate Catalysis for Thermomicrobium Roseum Lipase. Enzyme Microb. Technol. 2022, 156, 109989. DOI: 10.1016/j.enzmictec.2022.109989.
  • Liu, D.; Shriver, Z.; Godavarti, R.; Venkataraman, G.; Sasisekharan, R. The Calcium-Binding Sites of Heparinase I from Flavobacterium Heparinum Are Essential for Enzymatic Activity. J. Biol. Chem. 1999, 274, 4089–4095. DOI: 10.1074/jbc.274.7.4089.
  • Yang, B.-C.; Zhang, C.; Wang, C.; Zhou, H.; Li, Z.-Y.; Song, Y.-J.; Zhang, T.-C.; Luo, X.-G. Soluble Expression and Purification of Heparinase I in Escherichia Coli Using a Hexahistidine-Tagged Small Ubiquitin-like Modifier as a Fusion Partner. Biotechnol. Biotechnol. Equip. 2017, 31, 1040–1045. DOI: 10.1080/13102818.2017.1355264.
  • Chen, Y.; Xing, X.-H.; Ye, F.; Kuang, Y.; Luo, M. Production of MBP–HepA Fusion Protein in Recombinant Escherichia Coli by Optimization of Culture Medium. Biochem. Eng. J. 2007, 34, 114–121. DOI: 10.1016/j.bej.2006.11.020.
  • Chen, S.; Ye, F.; Chen, Y.; Chen, Y.; Zhao, H.; Yatsunami, R.; Nakamura, S.; Arisaka, F.; Xing, X.-H. Biochemical Analysis and Kinetic Modeling of the Thermal Inactivation of MBP-Fused Heparinase I: Implications for a Comprehensive Thermostabilization Strategy. Biotechnol. Bioeng. 2011, 108, 1841–1851. DOI: 10.1002/bit.23144.
  • Yu, P.; Jia, T.; Chen, Y.; Wu, Y.; Zhang, Y. Improving the Activity of Heparinase I by the Directed Evolution, Its Enzymatic Properties and Optimal Conditions for Heparin Degrading by Recombinant Cells. Biochem. Eng. J. 2016, 114, 237–243. DOI: 10.1016/j.bej.2016.07.011.
  • Shriver, Z.; Liu, D.; Hu, Y.; Sasisekharan, R. Biochemical Investigations and Mapping of the Calcium-Binding Sites of Heparinase I from Flavobacterium Heparinum. J. Biol. Chem. 1999, 274, 4082–4088. DOI: 10.1074/jbc.274.7.4082.
  • Godavarti, R.; Sasisekharan, R. Heparinase I from Flavobacterium Heparinum. Role of Positive Charge in Enzymatic Activity. J Biol Chem 1998, 273, 248–255. DOI: 10.1074/jbc.273.1.248.
  • Zheng, F.; Tu, T.; Wang, X.; Wang, Y.; Ma, R.; Su, X.; Xie, X.; Yao, B.; Luo, H. Enhancing the Catalytic Activity of a Novel GH5 Cellulase GtCel5 from Gloeophyllum Trabeum CBS 900.73 by Site-Directed Mutagenesis on Loop 6. Biotechnol. Biofuels. 2018, 11, 76. DOI: 10.1186/s13068-018-1080-5.
  • Gacesa, P. Alginate-Modifying Enzymes: A Proposed Unified Mechanism of Action for the Lyases and Epimerases. FEBS Lett. 1987, 212, 199–202. DOI: 10.1016/0014-5793(87)81344-3.
  • Li, J.; Du, L.; Wang, L. Glycosidic-Bond Hydrolysis Mechanism Catalyzed by Cellulase Cel7A from Trichoderma Reesei: A Comprehensive Theoretical Study by Performing MD, QM, and QM/MM Calculations. J. Phys. Chem. B. 2010, 114, 15261–15268. DOI: 10.1021/jp1064177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.