284
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Utilization of the sugar fraction from Arabica coffee pulp as a carbon source for bacteria producing cellulose and cytotoxicity with human keratinocyte

, , , , , , & show all

References

  • van der Vossen, H.; Bertrand, B.; Charrier, A. Next Generation Variety Development for Sustainable Production of Arabica Coffee (Coffea arabica L.): a Review. Euphytica 2015, 204, 243–256. DOI: 10.1007/s10681-015-1398-z.
  • International Coffee organization (2022, November). Trade Statistics - October 2022. International Coffee Organization. http://www.ico.org.
  • Craparo, A. C. W.; Van Asten, P. J. A.; Läderach, P.; Jassogne, L. T. P.; Grab, S. W. Coffea arabica Yields Decline in Tanzania Due to Climate Change: Global Implications. Agric. For. Meteorol. 2015, 207, 1–10. DOI: 10.1016/j.agrformet.2015.03.005.
  • Davis, A. P.; Gole, T. W.; Baena, S.; Moat, J. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities. PLOS One. 2012, 7, e47981. DOI: 10.1371/journal.pone.0047981.
  • Ulloa Rojas, J. B.; Verreth, J. A. J.; Amato, S.; Huisman, E. A. Biological Treatments Affect the Chemical Composition of Coffee Pulp. Bioresour. Technol. 2003, 89, 267–274. DOI: 10.1016/s0960-8524(03)00070-1.
  • Padmapriya, R.; Tharian, J. A.; Thirunalasundari, T. Coffee Waste management-An Overview. Int. J. Curr. Sci. 2013, 9, 83–91.
  • Sangta, J.; Wongkaew, M.; Tangpao, T.; Withee, P.; Haituk, S.; Arjin, C.; Sringarm, K.; Hongsibsong, S.; Sutan, K.; Pusadee, T.; et al. Recovery of Polyphenolic Fraction from Arabica Coffee Pulp and Its Antifungal Applications. Plants 2021, 10, 1422. DOI: 10.3390/plants10071422.
  • Rathinavelu, R.; Graziosi, G. Potential Alternative Use of Coffee Wastes and by-Products. London, UK: International Coffee Organization, 2005; Vol. 942; pp 1–4.
  • Gurram, R.; Al-Shannag, M.; Knapp, S.; Das, T.; Singsaas, E.; Alkasrawi, M. Technical Possibilities of Bioethanol Production from Coffee Pulp: A Renewable Feedstock. Clean Techn. Environ. Policy 2016, 18, 269–278. DOI: 10.1007/s10098-015-1015-9.
  • Manasa, V.; Padmanabhan, A.; Anu Appaiah, K. A. Utilization of Coffee Pulp Waste for Rapid Recovery of Pectin and Polyphenols for Sustainable Material Recycle. Waste Manag. 2021, 120, 762–771. DOI: 10.1016/j.wasman.2020.10.045.
  • Jayachandra, T.; Venugopal, C.; Anu Appaiah, K. Mycotypha-Treated Coffee Husk–a Novel Feed Stock for Biogas Production. Energy Sustain. Dev. 2011, 15, 104–108. DOI: 10.1016/j.esd.2011.01.001.
  • Heeger, A.; Kosińska-Cagnazzo, A.; Cantergiani, E.; Andlauer, W. Bioactives of Coffee Cherry Pulp and Its Utilisation for Production of Cascara Beverage. Food Chem. 2017, 221, 969–975. DOI: 10.1016/j.foodchem.2016.11.067.
  • Bondam, A. F.; Diolinda da Silveira, D.; Pozzada dos Santos, J.; Hoffmann, J. F. Phenolic Compounds from Coffee by-Products: Extraction and Application in the Food and Pharmaceutical Industries. Trends Food Sci. Technol. 2022, 123, 172–186. DOI: 10.1016/j.tifs.2022.03.013.
  • Shenoy, D.; Pai, A.; Vikas, R. K.; Neeraja, H. S.; Deeksha, J. S.; Nayak, C.; Rao, C. V. A Study on Bioethanol Production from Cashew Apple Pulp and Coffee Pulp Waste. Biomass Bioenergy 2011, 35, 4107–4111. DOI: 10.1016/j.biombioe.2011.05.016.
  • Menezes, E. G. T.; do Carmo, J. R.; Menezes, A. G. T.; Alves, J. G. L. F.; Pimenta, C. J.; Queiroz, F. Use of Different Extracts of Coffee Pulp for the Production of Bioethanol. Appl. Biochem. Biotechnol. 2013, 169, 673–687. DOI: 10.1007/s12010-012-0030-0.
  • Muzaifa, M.; Andini, R.; Sulaiman, M.; et al. Novel Utilization of Coffee Processing by-Products: kombucha Cascara Originated from ‘Gayo-Arabica’. IOP Conf. Ser. Earth Environ. Sci. 2021, 644, 012048. DOI: 10.1088/1755-1315/644/1/012048.
  • Tang, Z.; Li, Q.; Di, J.; Ma, C.; He, Y.-C. An Efficient Chemoenzymatic Cascade Strategy for Transforming Biomass into Furfurylamine with Lobster Shell-Based Chemocatalyst and Mutated ω-Transaminase Biocatalyst in Methyl Isobutyl Ketone-Water. Bioresour. Technol. 2023, 369, 128424. DOI: 10.1016/j.biortech.2022.128424.
  • Yang, Q.; Tang, W.; Li, L.; Huang, M.; Ma, C.; He, Y.-C. Enhancing Enzymatic Hydrolysis of Waste Sunflower Straw by Clean Hydrothermal Pretreatment. Bioresour. Technol. 2023, 383, 129236. DOI: 10.1016/j.biortech.2023.129236.
  • Sommano, S. R.; Jantrawut, P.; Sangta, J.; Chanabodeechalermrung, B.; Sunanta, P.; Bakshani, C.; Willats, W. Utilization of Coffee Pulp for the Production of Sustainable Cellulosic Composite and Plant-Based Hydrogel as a Potential Human Wound Dressing. Food Struct. 2023, 37, 100347. DOI: 10.1016/j.foostr.2023.100347.
  • Muzaifa, M, Rahmi, F, Syarifudin, Utilization of Coffee by-Products as Profitable Foods – A Mini Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 672(1), 012077. DOI: 10.1088/1755-1315/672/1/012077.
  • Murthy, P. S.; Madhava Naidu, M. Sustainable Management of Coffee Industry by-Products and Value Addition—a Review. Resour. Conserv. Recycl. 2012, 66, 45–58. DOI: 10.1016/j.resconrec.2012.06.005.
  • Pérez-Sariñana, B. Y.; Saldaña-Trinidad, S. Chemistry and Biotransformation of Coffee by-Products to Biofuels. In The Question of Caffeine, Latosińska, J. N., Latosińska, M., Eds. Intech: Rijeka, 2017; pp 143–161.
  • Braham, J. E.; Bressani, R. Coffee Pulp: Composition, Technology, and Utilization. IDRC: Ottawa, ON, CA, 1979.
  • Reichembach, L. H.; de Oliveira Petkowicz, C. L. Extraction and Characterization of a Pectin from Coffee (Coffea arabica L.) Pulp with Gelling Properties. Carbohydr. Polym. 2020, 245, 116473. DOI: 10.1016/j.carbpol.2020.116473.
  • Greser, A. B.; Avcioglu, N. H. Optimization and Physicochemical Characterization of Bacterial Cellulose by Komagataeibacter nataicola and Komagataeibacter maltaceti Strains Isolated from Grape, Thorn Apple and Apple Vinegars. Arch. Microbiol. 2022, 204, 465. DOI: 10.1007/s00203-022-03083-6.
  • Orlando, I.; Basnett, P.; Nigmatullin, R.; Wang, W.; Knowles, J. C.; Roy, I. Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing. Front. Bioeng. Biotechnol. 2020, 8, 557885. DOI: 10.3389/fbioe.2020.557885.
  • Volova, T. G.; Prudnikova, S. V.; Sukovatyi, A. G.; Shishatskaya, E. I. Production and Properties of Bacterial Cellulose by the Strain Komagataeibacter xylinus B-12068. Appl. Microbiol. Biotechnol. 2018, 102, 7417–7428. DOI: 10.1007/s00253-018-9198-8.
  • Nakayama, A.; Kakugo, A.; Gong, J. P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S. High Mechanical Strength Double‐Network Hydrogel with Bacterial Cellulose. Adv. Funct. Mater. 2004, 14, 1124–1128. DOI: 10.1002/adfm.200305197.
  • Ullah, H.; Santos, H. A.; Khan, T. Applications of Bacterial Cellulose in Food, Cosmetics and Drug Delivery. Cellulose 2016, 23, 2291–2314. DOI: 10.1007/s10570-016-0986-y.
  • Fu, L.; Zhang, J.; Yang, G. Present Status and Applications of Bacterial Cellulose-Based Materials for Skin Tissue Repair. Carbohydr. Polym. 2013, 92, 1432–1442. DOI: 10.1016/j.carbpol.2012.10.071.
  • Sanchavanakit, N.; Sangrungraungroj, W.; Kaomongkolgit, R.; Banaprasert, T.; Pavasant, P.; Phisalaphong, M. Growth of Human Keratinocytes and Fibroblasts on Bacterial Cellulose Film. Biotechnol. Prog. 2006, 22, 1194–1199. DOI: 10.1021/bp060035o.
  • Nordli, H. R.; Chinga-Carrasco, G.; Rokstad, A. M.; Pukstad, B. Producing Ultrapure Wood Cellulose Nanofibrils and Evaluating the Cytotoxicity Using Human Skin Cells. Carbohydr. Polym. 2016, 150, 65–73. DOI: 10.1016/j.carbpol.2016.04.094.
  • Chiaoprakobkij, N.; Seetabhawang, S.; Sanchavanakit, N.; Phisalaphong, M. Fabrication and Characterization of Novel Bacterial Cellulose/Alginate/Gelatin Biocomposite Film. J. Biomater. Sci. Polym. Ed. 2019, 30, 961–982. DOI: 10.1080/09205063.2019.1613292.
  • Singhsa, P.; Narain, R.; Manuspiya, H. Physical Structure Variations of Bacterial Cellulose Produced by Different Komagataeibacter xylinus Strains and Carbon Sources in Static and Agitated Conditions. Cellulose 2018, 25, 1571–1581. DOI: 10.1007/s10570-018-1699-1.
  • Wongkaew, M.; Kittiwachana, S.; Phuangsaijai, N.; Tinpovong, B.; Tiyayon, C.; Pusadee, T.; Chuttong, B.; Sringarm, K.; Bhat, F. M.; Sommano, S. R.; Cheewangkoon, R. Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality. Plants 2021, 10, 1148. DOI: 10.3390/plants10061148.
  • Wongkaew, M.; Tinpovong, B.; Sringarm, K.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Hanmoungjai, P.; Sommano, S. R. Crude Pectic Oligosaccharide Recovery from Thai Chok Anan Mango Peel Using Pectinolytic Enzyme Hydrolysis. Foods 2021, 10, 627. DOI: 10.3390/foods10030627.
  • Valera, M. J.; Torija, M. J.; Mas, A.; Mateo, E. Cellulose Production and Cellulose Synthase Gene Detection in Acetic Acid Bacteria. Appl. Microbiol. Biotechnol. 2015, 99, 1349–1361. DOI: 10.1007/s00253-014-6198-1.
  • Mohammadkazemi, F.; Azin, M.; Ashori, A. Production of Bacterial Cellulose Using Different Carbon Sources and Culture Media. Carbohydr. Polym. 2015, 117, 518–523. DOI: 10.1016/j.carbpol.2014.10.008.
  • Cai, Z.; Kim, J. Bacterial Cellulose/Poly(Ethylene Glycol) Composite: characterization and First Evaluation of Biocompatibility. Cellulose 2010, 17, 83–91. DOI: 10.1007/s10570-009-9362-5.
  • Anicuta, S.-G.; Dobre, L.; Stroescu, M. Fourier Transform Infrared (FTIR) Spectroscopy for Characterization of Antimicrobial Films Containing Chitosan. Analele Universită Ńii Din Oradea Fascicula 2010, 2010, 1234–1240.
  • Segal, L.; Creely, J. J.; Martin, A. E.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. DOI: 10.1177/004051755902901003.
  • Chittasupho, C.; Thongnopkoon, T.; Burapapisut, S.; Charoensukkho, C.; Shuwisitkul, D.; Samee, W. Stability, Permeation, and Cytotoxicity Reduction of Capsicum Extract Nanoparticles Loaded Hydrogel Containing Wax Gourd Extract. Saudi Pharm. J. 2020, 28, 1538–1547. DOI: 10.1016/j.jsps.2020.10.001.
  • Frómeta, R. A. R.; Sánchez, J. L.; García, J. M. R. Evaluation of Coffee Pulp as Substrate for Polygalacturonase Production in Solid State Fermentation. Emir. J. Food Agric. 2020, 32, 117–124. DOI: 10.9755/ejfa.2020.v32.i2.2068.
  • Gouvea, B. M.; Torres, C.; Franca, A. S.; Oliveira, L. S.; Oliveira, E. S. Feasibility of Ethanol Production from Coffee Husks. Biotechnol. Lett. 2009, 31, 1315–1319. DOI: 10.1007/s10529-009-0023-4.
  • Blinová, L.; Sirotiak, M.; Bartošová, A.; Soldán, M. Review: Utilization of Waste from Coffee Production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Volume 25, Issue 40, pp. 91–101, 2017. DOI: 10.1515/rput-2017-0011.
  • Rani, M. U.; Appaiah, K. A. A. Production of Bacterial Cellulose by Gluconacetobacter hansenii UAC09 Using Coffee Cherry Husk. J. Food Sci. Technol. 2013, 50, 755–762. DOI: 10.1007/s13197-011-0401-5.
  • Hussain, Z.; Sajjad, W.; Khan, T.; Wahid, F. Production of Bacterial Cellulose from Industrial Wastes: A Review. Cellulose 2019, 26, 2895–2911. DOI: 10.1007/s10570-019-02307-1.
  • Mikkelsen, D.; Flanagan, B. M.; Dykes, G. A.; Gidley, M. J. Influence of Different Carbon Sources on Bacterial Cellulose Production by Gluconacetobacter xylinus Strain ATCC 53524. J. Appl. Microbiol. 2009, 107, 576–583. DOI: 10.1111/j.1365-2672.2009.04226.x.
  • Kuo, C.-H.; Chen, J.-H.; Liou, B.-K.; Lee, C.-K. Utilization of Acetate Buffer to Improve Bacterial Cellulose Production by Gluconacetobacter xylinus. Food Hydrocoll. 2016, 53, 98–103. DOI: 10.1016/j.foodhyd.2014.12.034.
  • Shigematsu, T.; Takamine, K.; Kitazato, M.; Morita, T.; Naritomi, T.; Morimura, S.; Kida, K. Cellulose Production from Glucose Using a Glucose Dehydrogenase Gene (Gdh)-Deficient Mutant of Gluconacetobacter xylinus and Its Use for Bioconversion of Sweet Potato Pulp. J. Biosci. Bioeng. 2005, 99, 415–422. DOI: 10.1263/jbb.99.415.
  • Vandamme, E. J.; De Baets, S.; Vanbaelen, A.; Joris, K.; De Wulf, P. Improved Production of Bacterial Cellulose and Its Application Potential. Polym. Degrad. Stab. 1998, 59, 93–99. DOI: 10.1016/S0141-3910(97)00185-7.
  • Trovatti, E.; Serafim, L. S.; Freire, C. S.; Silvestre, A. J.; Neto, C. P. Gluconacetobacter sacchari: An Efficient Bacterial Cellulose Cell-Factory. Carbohydr. Polym. 2011, 86, 1417–1420. DOI: 10.1016/j.carbpol.2011.06.046.
  • Keshk, S.; Sameshima, K. Evaluation of Different Carbon Sources for Bacterial Cellulose Production. Afr. J. Biotechnol. 2005, 4, 478–482.
  • Toda, K.; Asakura, T.; Fukaya, M.; Entani, E.; Kawamura, Y. Cellulose Production by Acetic Acid-Resistant Acetobacter Xylinum. J. Ferment. Bioeng. 1997, 84, 228–231. DOI: 10.1016/S0922-338X(97)82059-4.
  • Norkrans, B. Cellulose and Cellulolysis11The Survey of Literature Pertaining to This Review Was Concluded in November 1966. The References Cited Have Partly Been Selected for the Scope of Information Provided by Summarizing Reviews, Lectures at Symposia, Etc. than in Recognition of Original Sources. In Advances in Applied Microbiology, Umbreit, W. W., Ed; Academic Press: London; 1968; Vol. 9, p. 91–130.
  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.; Pretorius, I. S. Microbial Cellulose Utilization: fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577, table of contents. DOI: 10.1128/MMBR.66.3.506-577.2002.
  • Berlemont, R.; Gerday, C. 1.18 – Extremophiles. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed; Burlington: Academic Press; 2011; pp 229–242.
  • Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D. S.; Jakobsen, R. R.; Castro-Mejía, J. L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2018, 11, 1. DOI: 10.3390/nu11010001.
  • Saichana, N.; Matsushita, K.; Adachi, O.; Frébort, I.; Frebortova, J. Acetic Acid Bacteria: A Group of Bacteria with Versatile Biotechnological Applications. Biotechnol. Adv. 2015, 33, 1260–1271.
  • Gomes, R. J.; de Sousa Faria-Tischer, P. C.; Tischer, C. A.; Constantino, L. V.; de Freitas Rosa, M.; Chideroli, R. T.; de Pádua Pereira, U.; Spinosa, W. A. Komagataeibacter intermedius V-05: An Acetic Acid Bacterium Isolated from Vinegar Industry, with High Capacity for Bacterial Cellulose Production in Soybean Molasses Medium. Food Technol. Biotechnol. 2021, 59, 432–442. DOI: 10.17113/ftb.59.04.21.7148.
  • Hutchens, S. A.; León, R. V.; O'neill, H. M.; Evans, B. R. Statistical Analysis of Optimal Culture Conditions for Gluconacetobacter hansenii Cellulose Production. Lett. Appl. Microbiol. 2007, 44, 175–180. DOI: 10.1111/j.1472-765X.2006.02055.x.
  • Son, H. J.; Heo, M. S.; Kim, Y. G.; Lee, S. J. Optimization of Fermentation Conditions for the Production of Bacterial Cellulose by a Newly Isolated Acetobacter. Biotechnol. Appl. Biochem. 2001, 33, 1–5. DOI: 10.1042/ba20000065.
  • Shoda, M.; Sugano, Y. Recent Advances in Bacterial Cellulose Production. Biotechnol. Bioprocess Eng. 2005, 10, 1–8. DOI: 10.1007/BF02931175.
  • Tsouko, E.; Pilafidis, S.; Dimopoulou, M.; Kourmentza, K.; Sarris, D. Bioconversion of Underutilized Brewing by-Products into Bacterial Cellulose by a Newly Isolated Komagataeibacter rhaeticus Strain: A Preliminary Evaluation of the Bioprocess Environmental Impact. Bioresour. Technol. 2023, 387, 129667. DOI: 10.1016/j.biortech.2023.129667.
  • Keshk, S.; Sameshima, K. Influence of Lignosulfonate on Crystal Structure and Productivity of Bacterial Cellulose in a Static Culture. Enzyme Microb. Technol. 2006, 40, 4–8. DOI: 10.1016/j.enzmictec.2006.07.037.
  • Russell, J. B.; Wilson, D. B. Why Are Ruminal Cellulolytic Bacteria Unable to Digest Cellulose at Low pH? J. Dairy Sci. 1996, 79, 1503–1509. DOI: 10.3168/jds.S0022-0302(96)76510-4.
  • Akinsemolu, A. A. The Role of Microorganisms in Achieving the Sustainable Development Goals. J. Cleaner Prod. 2018, 182, 139–155. DOI: 10.1016/j.jclepro.2018.02.081.
  • Bi, J.-C.; Liu, S.-X.; Li, C.-F.; Li, J.; Liu, L.-X.; Deng, J.; Yang, Y.-C. Morphology and Structure Characterization of Bacterial Celluloses Produced by Different Strains in Agitated Culture. J. Appl. Microbiol. 2014, 117, 1305–1311. DOI: 10.1111/jam.12619.
  • Carvalho, T.; Guedes, G.; Sousa, F. L.; Freire, C. S. R.; Santos, H. A. Latest Advances on Bacterial Cellulose‐Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnol. J. 2019, 14, e1900059. DOI: 10.1002/biot.201900059.
  • Costa, A. F. S.; Almeida, F. C. G.; Vinhas, G. M.; Sarubbo, L. A. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor as Nutrient Sources. Front. Microbiol. 2017, 8, 2027. DOI: 10.3389/fmicb.2017.02027.
  • Qiu, Y.; Qiu, L.; Cui, J.; Wei, Q. Bacterial Cellulose and Bacterial Cellulose-Vaccarin Membranes for Wound Healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 303–309. DOI: 10.1016/j.msec.2015.10.016.
  • Tang, W.; Jia, S.; Jia, Y.; Yang, H. The Influence of Fermentation Conditions and Post-Treatment Methods on Porosity of Bacterial Cellulose Membrane. World J. Microbiol. Biotechnol. 2010, 26, 125–131. DOI: 10.1007/s11274-009-0151-y.
  • Camere, S.; Karana, E. Fabricating Materials from Living Organisms: An Emerging Design Practice. J. Cleaner Prod. 2018, 186, 570–584. DOI: 10.1016/j.jclepro.2018.03.081.
  • Urbina, L.; Corcuera, M. Á.; Gabilondo, N.; Eceiza, A.; Retegi, A. A Review of Bacterial Cellulose: sustainable Production from Agricultural Waste and Applications in Various Fields. Cellulose 2021, 28, 8229–8253. DOI: 10.1007/s10570-021-04020-4.
  • Revin, V.; Liyaskina, E.; Nazarkina, M.; Bogatyreva, A.; Shchankin, M. Cost-Effective Production of Bacterial Cellulose Using Acidic Food Industry by-Products. Braz. J. Microbiol. 2018, 49(Suppl 1), 151–159. DOI: 10.1016/j.bjm.2017.12.012.
  • Sheykhnazari, S.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Golalipour, M. Bacterial Synthesized Cellulose Nanofibers; Effects of Growth Times and Culture Mediums on the Structural Characteristics. Carbohydr. Polym. 2011, 86, 1187–1191. DOI: 10.1016/j.carbpol.2011.06.011.
  • Kunusa, W. R.; Isa, I.; Laliyo, L. A.; Iyabu, H. FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corncorbs in Alkaline Treatment. J. Phys. Conf. Ser. 2018, 1028, 012199. DOI: 10.1088/1742-6596/1028/1/012199.
  • Huang, C.; Yang, X.-Y.; Xiong, L.; Guo, H.-J.; Luo, J.; Wang, B.; Zhang, H.-R.; Lin, X.-Q.; Chen, X.-D. Evaluating the Possibility of Using Acetone‐Butanol‐Ethanol (ABE) Fermentation Wastewater for Bacterial Cellulose Production by G Luconacetobacter Xylinus. Lett. Appl. Microbiol. 2015, 60, 491–496. DOI: 10.1111/lam.12396.
  • Khami, S.; Khamwichit, W.; Suwannahong, K. Synthesis of Cellulose Acetate Nanofiber (CANF) from Bacterial Cellulose (BC) Incubated from Cannery Seafood Wastewater (CSW) Using Acetobacter Xylinum. ARPN J. Eng. Appl. Sci. 2019, 14, 3038–3045.
  • Tseng, Y. S.; Patel, A. K.; Chen, C.-W.; Dong, C.-D.; Singhania, R. R. Improved Production of Bacterial Cellulose by Komagataeibacter europaeus Employing Fruit Extract as Carbon Source. J. Food Sci. Technol. 2023, 60, 1054–1064. DOI: 10.1007/s13197-022-05451-y.
  • Treesuppharat, W.; Rojanapanthu, P.; Siangsanoh, C.; Manuspiya, H.; Ummartyotin, S. Synthesis and Characterization of Bacterial Cellulose and Gelatin-Based Hydrogel Composites for Drug-Delivery Systems. Biotechnol. Rep. 2017, 15, 84–91. DOI: 10.1016/j.btre.2017.07.002.
  • Dórame-Miranda, R. F.; Gámez-Meza, N.; Medina-Juárez, L. Á.; Ezquerra-Brauer, J. M.; Ovando-Martínez, M.; Lizardi-Mendoza, J. Bacterial Cellulose Production by Gluconacetobacter entanii Using Pecan Nutshell as Carbon Source and Its Chemical Functionalization. Carbohydr. Polym. 2019, 207, 91–99. DOI: 10.1016/j.carbpol.2018.11.067.
  • Li, Z.; Wang, L.; Hua, J.; Jia, S.; Zhang, J.; Liu, H. Production of Nano Bacterial Cellulose from Waste Water of Candied Jujube-Processing Industry Using Acetobacter Xylinum. Carbohydr. Polym. 2015, 120, 115–119. DOI: 10.1016/j.carbpol.2014.11.061.
  • Zhang, K. Illustration of the Development of Bacterial Cellulose Bundles/Ribbons by Gluconacetobacter xylinus via Atomic Force Microscopy. Appl. Microbiol. Biotechnol. 2013, 97, 4353–4359. DOI: 10.1007/s00253-013-4752-x.
  • Hasanin, M. S.; Abdelraof, M.; Hashem, A. H.; El Saied, H. Sustainable Bacterial Cellulose Production by Achromobacter Using Mango Peel Waste. Microb. Cell Fact. 2023, 22, 24. DOI: 10.1186/s12934-023-02031-3.
  • Jittaut, P.; Hongsachart, P.; Audtarat, S.; Dasri, T. Production and Characterization of Bacterial Cellulose Produced by Gluconacetobacter xylinus BNKC 19 Using Agricultural Waste Products as Nutrient Source. Arab J. Basic Appl. Sci. 2023, 30, 221–230. DOI: 10.1080/25765299.2023.2172844.
  • Bilgi, E.; Homan Gokce, E.; Bayir, E.; Sendemir, A.; Ozer, K. O.; Hames Tuna, E. E. Bacterial Cellulose Based Facial Mask with Antioxidant Property and High Moisturizing Capacity. Cellulose 2021, 28, 10399–10414. DOI: 10.1007/s10570-021-04106-z.
  • Schmitt, D. F.; Frankos, V. H.; Westland, J.; Zoetis, T. Toxicologic Evaluation of Cellulon™ Fiber; Genotoxicity, Pyrogenicity, Acute and Subchronic Toxicity. J. Am. Coll. Toxicol. 1991, 10, 541–554. DOI: 10.3109/10915819109078651.
  • Moreira, S.; Silva, N. B.; Almeida-Lima, J.; Rocha, H. A. O.; Medeiros, S. R. B.; Alves, C.; Gama, F. M. BC Nanofibres: In Vitro Study of Genotoxicity and Cell Proliferation. Toxicol. Lett. 2009, 189, 235–241. DOI: 10.1016/j.toxlet.2009.06.849.
  • Zillich, O. V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. DOI: 10.1111/ics.12218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.