113
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Production, characterization, and bio-ethanologenic potential of a novel tripartite raw starch-digesting amylase from Priestia flexa UCCM 00132

ORCID Icon, ORCID Icon, , , &

References

  • Bozic, N.; Lončar, N.; Slavić, M. S.; Vujčić, Z. Raw Starch Degrading α-Amylases: An Unsolved Riddle. Amylase 2017, 1, 12–25. DOI: 10.1515/amylase-2017-0002.
  • Wang, L.; Zhao, S.; Chen, X.-X.; Deng, Q.-P.; Li, C.-X.; Feng, J.-X. Secretory Overproduction of a Raw Starch-Degrading Glucoamylase in Penicillium Oxalicum Using Strong Promoter and Signal Peptide. Appl. Microbiol. Biotechnol. 2018, 102, 9291–9301. DOI: 10.1007/s00253-018-9307-8.
  • Gęsicka, A.; Borkowska, M.; Białas, W.; Kaczmarek, P.; Celińska, E. Production of Raw Starch-Digesting Amylolytic Preparation in Yarrowia lipolytica and Its Application in Biotechnological Synthesis of Lactic Acid and Ethanol. Microorganisms 2020, 8, 717. DOI: 10.3390/microorganisms8050717.
  • Prongjit, D.; Lekakarn, H.; Bunterngsook, B.; Aiewviriyasakul, K.; Sritusnee, W.; Champreda, V. Functional Characterization of Recombinant Raw Starch Degrading α-Amylase from Roseateles terrae HL11 and Its Application on Cassava Pulp Saccharification. Catalysts 2022, 12, 647. DOI: 10.3390/catal12060647.
  • Luo, H.; Han, H.; He, Z.; Zhou, C.; Shi, Z. Efficient and Cost-Reduced Glucoamylase Fed-Batch Production with Alternative Carbon Sources. J. Microbiol. Biotechnol. 2015, 25, 185–195. 2015, DOI: 10.4014/jmb.1406.06030.
  • Maktouf, S.; Kamoun, A.; Moulis, C.; Remaud-Simeon, M.; Ghribi, D.; Châabouni, S. E. A New Raw-Starch-Digesting α-Amylase: production under Solid-State Fermentation on Crude Millet and Biochemical Characterization. J. Microbiol. Biotechnol. 2013, 23, 489–498. 2013, DOI: 10.4014/jmb.1211.11027.
  • Gu, L.-S.; Tan, M.-Z.; Li, S.-H.; Zhang, T.; Zhang, Q.-Q.; Li, C.-X.; Luo, X.-M.; Feng, J.-X.; Zhao, S. ARTP/EMS‑Combined Multiple Mutagenesis Efficiently Improved Production of Raw Starch‑Degrading Enzymes in Penicillium Oxalicum and Characterization of the Enzyme‑Hyperproducing Mutant. Biotechnol. Biofuels 2020, 13, 187. DOI: 10.1186/s13068-020-01826-5.
  • Ozdemir, S.; Fincan, S. A.; Karakaya, A.; Enez, B. A Novel Raw Starch Hydrolyzing Thermostable α-Amylase Produced by Newly Isolated Bacillus mojavensis so-10: purification, Characterization and Usage in Starch Industries. Braz. Arch. Biol. Technol. 2018, 61, e18160399. DOI: 10.1590/1678-4324-2018160399.
  • Cripwell, R. A.; Rose, S. H.; Viljoen-Bloom, M.; van Zyl, W. H. Improved Raw Starch Amylase Production by Saccharomyces cerevisiae Using Codon Optimization Strategies. FEMS Yeasts Res. 2019, 19, 2019 DOI: 10.1093/femsyr/foy127.
  • Shofiyah, Sofi Siti, Yuliani, Dewi, Widya, Nurul, Sarian, Fean D, Puspasari, Fernita, Radjasa, Ocky Karna, Natalia, Dessy, Ihsanawati,. Isolation, Expression, and Characterization of Raw Starch Degrading α-Amylase from a Marine Lake Bacillus megaterium NL3. Heliyon 2020, 6, e05796. DOI: 10.1016/j.heliyon.2020.e05796.
  • Nwagu, T. N.; Okolo, B.; Aoyagi, H.; Yoshida, S. Chemical Modification with Phthalic Anhydride and Chitosan: viable Options for the Stabilization of Raw Starch Digesting Amylase from Aspergillus Carbonarius. Int. J. Biol. Macromol. 2017, 99, 641–647. DOI: 10.1016/j.ijbiomac.2017.03.022.
  • Xu, Q.-S.; Yan, Y.-S.; Feng, J.-X. Efficient Hydrolysis of Raw Starch and Ethanol Fermentation: A Novel Raw Starch-Digesting Glucoamylase from Penicillium Oxalicum. Biotechnol. Biofuels 2016, 9, 216. DOI: 10.1186/s13068-016-0636-5.
  • Liu, X. D.; Xu, Y. A Novel Raw Starch Digesting α-Amylase from a Newly Isolated Bacillus sp. YX-1: purification and Characterization. Bioresour. Technol. 2008, 99, 4315–4320. DOI: 10.1016/j.biortech.2007.08.040.
  • Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem 1944, 153, 375–380. DOI: 10.1016/S0021-9258(18)71980-7.
  • Holt, J. G. Bergey’s Manual of Determinative Bacteriology. Ninth Edn., Lippincott Williams and Wilkins, Baltimore, Maryland, 1994
  • Ekpenyong, M. G.; Antai, S. P.; Asitok, A. D. A Pseudomonas aeruginosa Strain IKW1 Produces an Unusual Polymeric Surface-Active Compound in Waste Frying Oil-Minimal Medium. Int. J. Sci. 2016, 5, 108–123. DOI: 10.18483/ijSci.1064.
  • Ekpenyong, M.; Antai, S.; Asitok, A.; Ekpo, B. Response Surface Modeling and Optimization of Major Medium Variables for Glycolipopeptide Production. Biocatal. Agric. Biotechnol. 2017, 10, 113–121. DOI: 10.1016/j.bcab.2017.02.015.
  • Ekpenyong, M. G.; Asitok, A. D.; Antigha, R. E.; Ogarekpe, N. M.; Ekong, U. S.; Asuquo, M. I.; Essien, J. P.; Antai, S. P. Bioprocess Optimization of Nutritional Parameters for Enhanced anti-Leukemic L-Asparaginase Production by Aspergilluscandidus UCCM 00117: A Sequential Statistical Approach. Int. J. Pept. Res. Ther. 2021, 27, 1501–1527. DOI: 10.1007/s10989-021-10188-x.
  • Asitok, A. D.; Ekpenyong, M. G.; Takon, I. A.; Antai, S. P.; Ogarekpe, N. M.; Antigha, R. E.; Edet, P. E.; Antai, A. S.; Essien, J. P. A Novel Strain of Stenotrophomonas acidaminiphila Produces Thermostable Alkaline Peptidase on Agro-Industrial Wastes: process Optimization, Kinetic Modeling and Scale-up. Arch. Microbiol. 2022a, 204, 400. DOI: 10.1007/s00203-022-03010-9.
  • Akwagiobe, E.; Ekpenyong, M.; Asitok, A.; Amenaghawon, A.; Ubi, D.; Ikharia, E.; Kusuma, H.; Antai, S. Strain Improvement, Artificial Intelligence Optimization, and Sensitivity Analysis of Asparaginase‑Mediated Acrylamide Reduction in Sweet Potato Chips. J. Food Sci. Technol. 2023, 60, 2358–2369. DOI: 10.1007/s13197-023-05757-5.
  • Ekpenyong, M.; Asitok, A.; Ben, U.; Amenaghawon, A.; Kusuma, H.; Akpan, A.; Antai, S. Application of the Novel Manta Ray Foraging Algorithm to Optimize Acidic Peptidase Production in Solid-State Fermentation Using Binary Agro-Industrial Waste. Prep. Biochem. Biotechnol. 2023, 1–13. DOI: 10.1080/10826068.2023.2214936.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Laemmli, U. K. Cleavage of Structural Protein during the Assembly of the Head 385 of Bacteriophage T4. Nature 1970, 227, 680–685. DOI: 10.1038/227680a0.
  • Shetty, J. K.; Singley, E. C.; Strohm, B. A. Production of Glucose from Starch Comprises Providing Mixture of Starch Slurry Having Low pH and Thermostable, Acid-Stable Alpha-Amylase Cultured from Bacillus acidocaldarius. US2003134395-A1 2003,
  • Bernfeld, P. Amylases, α and β. Methods Enzymol. 1955, 1, 149–158. DOI: 10.1016/0076-6879(55)01021-5.
  • Hansen, S. A. The Thin-Layer Chromatographic Method for the Identification of Mono-, di- and Trisaccharides. J. Chromatogr. 1975, 107, 224–226. DOI: 10.1016/S0021-9673(00)82770-3.
  • Fang, W.; Xue, S.; Deng, P.; Zhang, X.; Wang, X.; Xiao, Y.; Fang, Z. AmyZ1: A Novel α-Amylase from Marine Bacterium Pontibacillus sp. ZY with High Activity toward Raw Starches. Biotechnol. Biofuels 2019, 12, 95. DOI: 10.1186/s13068-019-1432-9.
  • Xiao, Z.; Storms, R.; Tsang, A. A Quantitative Starch-Iodine Method for Measuring Alpha-Amylase and Glucoamylase Activities. Anal. Biochem. 2006, 351, 146–148. DOI: 10.1016/j.ab.2006.01.036.
  • Shanavas, S.; Padmaja, G.; Moorthy, S. N.; Sajeev, M. S.; Sheriff, J. T. Process Optimization for Bioethanol Production from Cassava Starch Using Novel Eco-Friendly Enzymes. Biomass Bioenergy 2011, 35, 901–909. DOI: 10.1016/j.biombioe.2010.11.004.
  • Manetsberger, J.; Gómez, N. C.; Benomar, N.; Christie, G.; Hikmate, A. H. Characterization of the Culturable Sporobiota of Spanish Olive Groves and Its Tolerance toward Environmental Challenges. Microbiol. Spectr. 2023, 11, DOI: 10.1128/spectrum.04013-22.
  • Duque, S. M. M.; Dizon, E. I.; Merca, F. E.; Flores, D. M. Optimization of Raw-Starch-Digesting Amylase (RSDA) Production Medium for Enterococcus faecium DMF78. Int. Food. Res. J. 2016, 23, 1280–1288.
  • Bozic, N.; Ruiz, J.; López-Santín, J.; Vujcic, Z. Production and Properties of the Highly Efficient Raw Starch Digesting α-Amylase from a Bacillus licheniformis ATCC 9945a. Biochem. Eng. J. 2011, 53, 203–209. DOI: 10.1016/j.bej.2010.10.014.
  • Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M. A. B.; et al. Aqueous Two-Phase System (ATPS): an Overview and Advances in Its Applications. Biol. Proced. Online 2016, 18, 18. DOI: 10.1186/s12575-016-0048-8.
  • Asitok, A. D.; Ekpenyong, M. G.; Ogarekpe, N. M.; Antigha, R. E.; Takon, I. A.; Rao, A. P.; Iheanacho, J. N.; Antai, S. P. Intracellular-to-Extracellular Localization Switch of Acidic Lipase in Enterobacter cloacae through Multi-Objective Medium Optimization: aqueous Two-Phase Purification and Activity Kinetics. World J. Microbiol. Biotechnol. 2022b, 38, 235. DOI: 10.1007/s11274-022-03429-8.
  • Bilderback, D. E. A Simple Method to Differentiate α- and β-Amylases. Plant Physiol. 1973, 51, 594–595. DOI: 10.1104/pp.51.3.594.
  • Roy, J. K.; Rai, S. K.; Mukherjee, A. K. Characterization and Application of a Detergent-Stable Alkaline Alpha-Amylase from Bacillus subtilisstrain as-S01a. Int. J. Biol. Macromol. 2012, 50, 219–229. DOI: 10.1016/j.ijbiomac.2011.10.026.
  • Valjakka, T.-T.; Ponte, J. G.; Jr,.; Kulp, K. Studies on a Raw Starch Digesting Enzyme. II Replacement of Sucrose in White Pan Bread. Cereal. Chem. 1994, 71, 145–149.
  • Mehta, D.; Satyanarayana, T. Domain C of Thermostable α-Amylase of Geobacillus thermoleovorans Mediates Raw Starch Adsorption. Appl. Microbiol. Biotechnol. 2014, 98, 4503–4519. DOI: 10.1007/s00253-013-5459-8.
  • Oates, C. G. Towards an Understanding of Starch Granule Structure and Hydrolysis. Trends Food Sci. Technol. 1997, 8, 375–382. DOI: 10.1016/S0924-2244(97)01090-X.
  • Abd-Elhalem, B. T.; El-Sawy, M.; Gamal, R. F.; Abou-Taleb, K. A. Production of Amylases from Bacillus amyloliquefaciens under Submerged Fermentation Using Some Agro-Industrial by-Products. Ann. Agric. Sci. 2015, 60, 193–202. DOI: 10.1016/j.aoas.2015.06.001.
  • Wang, W. J.; Powell, A. D.; Oates, C. G. Sago Starch as a Biomass Source: raw Sago Starch Hydrolysis by Commercial Enzymes. Bioresour. Technol. 1996, 55, 55–61. DOI: 10.1016/0960-8524(95)00132-8.
  • Annamalai, N.; Thavasi, R.; Vijayalakshmi, S.; Balasubramanian, T. Extraction, Purification and Characterization of Thermostable, Alkaline Tolerant α-Amylase from Bacillus cereus. Indian J. Microbiol. 2011, 51, 424–429. DOI: 10.1007/s12088-011-0160-z.
  • Dahot, M. U.; Saboury, A. A.; Moosavi-Movahedi, A. A. Inhibition of β-Amylase Activity by Calcium, Magnesium and Zinc Ions Determined by Spectrophotometry and Isothermal Titration Calorimetry. J. Enzyme Inhib. Med. Chem. 2004, 19, 157–160. DOI: 10.1080/14756360310001650255.
  • Li, H.; Yao, D.; Ying, J.; Han, X.; Zhang, X.; Fang, X.; Fang, Z.; Xiao, Y. Enhanced Extracellular Raw Starch-Degrading α-Amylase Production in Bacillus subtilis through Signal Peptide and Translation Efficiency Optimization. Biochem. Eng. J. 2022, 189, 108718. DOI: 10.1016/j.bej.2022.108718.
  • Liu, Y.; Yu, J.; Li, F.; Peng, H.; Zhang, X.; Xiao, Y.; He, C. Crystal Structure of a Raw-Starch Degrading Bacterial α-Amylase Belonging to Subfamily 37 of the Glycoside Hydrolase Family GH13. Sci. Rep. 2017, 7, 44067. DOI: 10.1038/srep44067.
  • Slavic, M. S.; Pesic, M.; Vujcic, Z.; Bozic, N. Overcoming Hydrolysis of Raw Corn Starch under Industrial Conditions with Bacillus licheniformis ATCC 9945a α-Amylase. Appl. Microbiol. Biotechnol. 2016, 100, 2709–2719. DOI: 10.1007/s00253-015-7101-4.
  • Białas, W.; Czerniak, A.; Szymanowska-Powałowska, D. Kinetic Modeling of Simultaneous Saccharification and Fermentation of Corn Starch for Ethanol Production. Acta Biochim. Pol. 2014, 61, 153–162.
  • Verma, N.; Kumar, V. Microbial Conversion of Waste Biomass into Bioethanol: current Challenges and Future Prospects. Biomass Conv. Bioref. 2023, 13, 6419–6456. 2023, DOI: 10.1007/s13399-021-01824-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.