78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Kinetics of dye decolorization using heterogeneous catalytic system with immobilized Achromobacter xylosoxidans DDB6

, , , &

References

  • Harish, B. S.; Thayumanavan, T.; Nambukrishnan, V.; Sakthishobana, K. Heterogeneous Biocatalytic System for Effective Decolorization of Textile Dye Effluent. 3 Biotech 2023, 13, 165. DOI: 10.1007/s13205-023-03586-z.
  • Saratale, R. G.; Saratale, G. D.; Chang, J. S.; Govindwar, S. P. Decolorization and Biodegradation of Reactive Dyes and Dye Wastewater by a Developed Bacterial Consortium. Biodegradation 2010, 21, 999–1015. DOI: 10.1007/s10532-010-9360-1.
  • Lellis, B.; Fávaro-Polonio, C. Z.; Pamphile, J. A.; Polonio, J. C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. DOI: 10.1016/j.biori.2019.09.001.
  • Samuchiwal, S.; Gola, D.; Malik, A. Decolourization of Textile Effluent Using Native Microbial Consortium Enriched from Textile Industry Effluent. J. Hazard. Mater. 2021, 402, 123835. DOI: 10.1016/j.jhazmat.2020.123835.
  • Kim, S.; Park, C.; Kim, T.-H.; Lee, J.; Kim, S.-W. COD Reduction and Decolorization of Textile Effluent Using a Combined Process. J. Biosci. Bioeng. 2003, 95, 102–105. DOI: 10.1016/S1389-1723(03)80156-1.
  • Moosvi, S.; Kher, X.; Madamwar, D. Isolation, Characterization and Decolorization of Textile Dyes by a Mixed Bacterial Consortium JW-2. Dyes Pigm. 2007, 74, 723–729. DOI: 10.4172/2161-0525.1000160.
  • Imran, M.; Crowley, D. E.; Khalid, A.; Hussain, S.; Mumtaz, M. W.; Arshad, M. Microbial Biotechnology for Decolorization of Textile Wastewaters. Rev. Environ. Sci. Biotechnol. 2015, 14, 73–92. DOI: 10.1007/s11157-014-9344-4.
  • Li, H.-H.; Wang, Y.-T.; Wang, Y.; Wang, H.-X.; Sun, K.-K.; Lu, Z.-M. Bacterial Degradation of Anthraquinone Dyes. J. Zhejiang Univ. Sci. B 2019, 20, 528–540. DOI: 10.1631/jzus.B1900165.
  • Bilal, M.; Asgher, M. Dye Decolorization and Detoxification Potential of Ca-Alginate Beads Immobilized Manganese Peroxidase. BMC Biotechnol. 2015, 15, 111. DOI: 10.1186/s12896-015-0227-8.
  • Sulthana, R.; Taqui, S. N.; Syed, U. T.; Soudagar, M. E. M.; Mujtaba, M. A.; Mir, R. A.; Shahapurkar, K.; Khidmatgar, A.; Mohanavel, V.; Syed, A. A.; et al. Biosorption of Crystal Violet by Nutraceutical Industrial Fennel Seed Spent Equilibrium, Kinetics, and Thermodynamic Studies. Biocatal. Agric. Biotechnol. 2022, 43, 102402. DOI: 10.1016/j.bcab.2022.102402.
  • Samsonoff, C.; Daily, J.; Almog, R.; Berns, D. S. The Use of Coomassie Brilliant Blue for Critical Micelle Concentration Determination of Detergents. J. Colloid Interface Sci. 1986, 109, 325–329. DOI: 10.1016/0021-9797(86)90310-3.
  • Faouzi, A. M.; Nasr, B.; Abdellatif, G. J. D. Electrochemical Degradation of Anthraquinone Dye Alizarin Red S by Anodic Oxidation on Boron-Doped Diamond. Dyes Pigm. 2007, 73, 86–89. DOI: 10.1016/j.dyepig.2005.10.013.
  • Standard Methods for Examination of Water and Wastewater. Anales de Hidrología Médica; Carranzo, I. V., Eds. Madrid: Universidad Complutense de Madrid, 2012.
  • Mahdinia, E.; Liu, S.; Demirci, A.; et al. Microbial Growth Models. Food Safe. Eng. 2020, 357–398.
  • Zwietering, M. H.; Jongenburger, I.; Rombouts, F. M.; van't Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. DOI: 10.1128/aem.56.6.1875-1881.1990.
  • Harish, B.; Uppuluri, K. B. Modeling of Growth Kinetics for an Isolated Marine Bacterium, Oceanimonas sp. BPMS22 during the Production of a Trypsin Inhibitor. Prep. Biochem. Biotechnol. 2018, 48, 556–563. DOI: 10.1080/10826068.2018.1476878.
  • Kiran, M. G.; Pakshirajan, K.; Das, G. Heavy Metal Removal from Aqueous Solution Using Sodium Alginate Immobilized Sulfate Reducing Bacteria: mechanism and Process Optimization. J. Environ. Manage. 2018, 218, 486–496. DOI: 10.1016/j.jenvman.2018.03.020.
  • Bramhachari, P.; Reddy, D. R. S.; Kotresha, D. Biodegradation of Catechol by Free and Immobilized Cells of Achromobacter xylosoxidans Strain 15DKVB Isolated from Paper and Pulp Industrial Effluents. Biocatal. Agric. Biotechnol. 2016, 7, 36–44. DOI: 10.1016/j.bcab.2016.05.003.
  • Devi, P.; Wahidullah, S.; Sheikh, F.; Pereira, R.; Narkhede, N.; Amonkar, D.; Tilvi, S.; Meena, R. M. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3. Mar. Drugs. 2017, 15, 30. DOI: 10.3390/md15020030.
  • Rahman, Q. I.; Ali, A.; Ahmad, N.; Lohani, M. B.; Mehta, S. K.; Muddassir, M. Synthesis and Characterization of CuO Rods for Enhanced Visible Light Driven Dye Degradation. J. Nanosci. Nanotechnol. 2020, 20, 7716–7723. DOI: 10.1166/jnn.2020.18713.
  • Chen, C.-C.; Liao, H.-J.; Cheng, C.-Y.; Yen, C.-Y.; Chung, Y.-C. Biodegradation of Crystal Violet by Pseudomonas putida. Biotechnol. Lett. 2007, 29, 391–396. DOI: 10.1007/s10529-006-9265-6.
  • Roy, D. C.; Biswas, S. K.; Saha, A. K.; Sikdar, B.; Rahman, M.; Roy, A. K.; Prodhan, Z. H.; Tang, S.-S. Biodegradation of Crystal Violet Dye by Bacteria Isolated from Textile Industry Effluents. PeerJ. 2018, 6, e5015. DOI: 10.7717/peerj.5015.
  • Bharagava, R. N.; Mani, S.; Mulla, S. I.; Saratale, G. D. Degradation and Decolourization Potential of an Ligninolytic Enzyme Producing Aeromonas hydrophila for Crystal Violet Dye and Its Phytotoxicity Evaluation. Ecotoxicol. Environ. Safe. 2018, 156, 166–175. DOI: 10.1016/j.ecoenv.2018.03.012.
  • Kyi, P. P.; Quansah, J. O.; Lee, C.-G.; Moon, J.-K.; Park, S.-J. The Removal of Crystal Violet from Textile Wastewater Using Palm Kernel Shell-Derived Biochar. Appl. Sci. 2020, 10, 2251. DOI: 10.3390/app10072251.
  • Zheng, M.; Chi, Y.; Yi, H.; Shao, S. Decolorization of Alizarin Red and Other Synthetic Dyes by a Recombinant Laccase from Pichia pastoris. Biotechnol. Lett. 2014, 36, 39–45. DOI: 10.1007/s10529-013-1323-2.
  • Yang, X.; Zheng, J.; Lu, Y.; Jia, R. Degradation and Detoxification of the Triphenylmethane Dye Malachite Green Catalyzed by Crude Manganese Peroxidase from Irpex Lacteus F17. Environ. Sci. Pollut. Res. Int. 2016, 23, 9585–9597. DOI: 10.1007/s11356-016-6164-9.
  • Illakkiam, D.; Subha, D.; Ahila, V.; et al. Decolorization of Alizarin Red s Dye by Bacterial Strains Isolated from Industrial Effluents. Int. J. Plant Animal Environ. Sci. 2016, 6, 268–275.
  • Yang, J.; Zhang, Y.; Wang, S.; Li, S.; Wang, Y.; Wang, S.; Li, H. Biodegradation of Crystal Violet Mediated by CotA from Bacillus amyloliquefaciens. J. Biosci. Bioeng. 2020, 130, 347–351. DOI: 10.1016/j.jbiosc.2020.05.005.
  • Sharma, S. ZnO Nano-Flowers from Carica Papaya Milk: Degradation of Alizarin Red-S Dye and Antibacterial Activity against Pseudomonas aeruginosa and Staphylococcus aureus. Optik 2016, 127, 6498–6512. DOI: 10.1016/j.ijleo.2016.04.036.
  • Tokiran, S.; Maniyam, M. N.; Yaacob, N. S.; et al. Decolourization of Textile Dyes by Malaysian Rhodococcus Strains. Indian J. Fundam. Appl. Life Scie. 2016, 6, 14–20.
  • Abo-State, M.; Saleh, Y.; Hazaa, H. Decolorization of Congo Red Dye by Bacterial Isolates. J. Ecol. Health Environ. 2017, 5, 41–48. DOI: 10.12785/jehe/050201.
  • Wang, J.; Qiao, M.; Wei, K.; Ding, J.; Liu, Z.; Zhang, K.-Q.; Huang, X. Decolorizing Activity of Malachite Green and Its Mechanisms Involved in Dye Biodegradation by Achromobacter xylosoxidans MG1. J. Mol. Microbiol. Biotechnol. 2011, 20, 220–227. DOI: 10.1159/000330669.
  • Kumar, M. A.; Zamana, P. A.; Kumar, V. V.; Baskaralingam, P.; Thiruvengadaravi, K. V.; Amudha, T.; Sivanesan, S. Achromobacter xylosoxidans Strain APZ for Phthalocyanine Dye Degradation: Chemo-Metric Optimization and Canonical Correlation Analyses. J. Water Process Eng. 2017, 18, 73–82. DOI: 10.1016/j.jwpe.2017.06.005.
  • Manikandan, N.; Kuzhali, S. S.; Kumuthakalavalli, R. Biodegradation of Textile Dye by Using Achromobacter xylosoxidans GRIRKNM11 Isolated from Dye Polluted site. J. Environ. Anal. Toxicol. 2012, 02, 8–11. DOI: 10.4172/2161-0525.1000160.
  • Unuofin, J. O.; Okoh, A. I.; Nwodo, U. U. Utilization of Agroindustrial Wastes for the Production of Laccase by Achromobacter xylosoxidans HWN16 and Bordetella bronchiseptica HSO16. J. Environ. Manage. 2019, 231, 222–231. DOI: 10.1016/j.jenvman.2018.10.016.
  • Kumar, Vijay, Jamwal, Aanchal, Kumar, Virender, Singh, Dharam, Ambika. Green Bioprocess for Degradation of Synthetic Dyes Mixture Using Consortium of Laccase-Producing Bacteria from Himalayan Niches. J. Environ. Manage. 2022;310:114764. DOI: 10.1016/j.jenvman.2022.114764.
  • Kim, M. H.; Kim, Y.; Park, H.-J.; Lee, J. S.; Kwak, S.-N.; Jung, W.-H.; Lee, S.-G.; Kim, D.; Lee, Y.-C.; Oh, T.-K.; et al. Structural Insight into Bioremediation of Triphenylmethane Dyes by Citrobacter sp. triphenylmethane Reductase. J. Biol. Chem. 2008, 283, 31981–31990. DOI: 10.1074/jbc.M804092200.
  • Sandhya, S.; Sarayu, K.; Uma, B.; Swaminathan, K. Decolorizing Kinetics of a Recombinant Escherichia coli SS125 Strain Harboring Azoreductase Gene from Bacillus latrosporus RRK1. Bioresour. Technol. 2008, 99, 2187–2191. DOI: 10.1016/j.biortech.2007.05.027.
  • Aksu, Z. Reactive Dye Bioaccumulation by Saccharomyces cerevisiae. Process Biochem. 2003, 38, 1437–1444. DOI: 10.1016/S0032-9592(03)00034-7.
  • Diniz, P. E.; Lopes, A. T.; Lino, A. R.; Serralheiro, M. L. Anaerobic Reduction of a Sulfonated Azo Dye, Congo Red, by Sulfate-Reducing Bacteria. Appl. Biochem. Biotechnol. 2002, 97, 147–163. DOI: 10.1385/ABAB:97:3:147.
  • Azmi, W.; Sani, R. K.; Banerjee, U. C. Biodegradation of Triphenylmethane Dyes. Enzyme Microb. Technol. 1998, 22, 185–191. DOI: 10.1016/S0141-0229(97)00159-2.
  • Mahanty, S.; Rathinasamy, K. The Natural Anthraquinone Dye Purpurin Exerts Antibacterial Activity by Perturbing the FtsZ Assembly. Bioorg. Med. Chem. 2021, 50, 116463. DOI: 10.1016/j.bmc.2021.116463.
  • Ju, Y.; Fang, J.; Liu, X.; Xu, Z.; Ren, X.; Sun, C.; Yang, S.; Ren, Q.; Ding, Y.; Yu, K.; et al. Photodegradation of Crystal Violet in TiO2 Suspensions Using UV–Vis Irradiation from Two Microwave-Powered Electrodeless Discharge Lamps (EDL-2): Products, Mechanism and Feasibility. J. Hazard. Mater. 2011, 185, 1489–1498. DOI: 10.1016/j.jhazmat.2010.10.074.
  • Yamazaki, M.; Yabe, M.; Iijima, K. Specific Ion Effects on the Aggregation of Polysaccharide-Based Polyelectrolyte Complex Particles Induced by Monovalent Ions within Hofmeister Series. J. Colloid Interface Sci. 2023, 643, 305–317. DOI: 10.1016/j.jcis.2023.04.030.
  • Thomas, O.; Brogat, M. Organic Constituents. UV–Visible Spectrophotometry of Waters and Soils. The Netherlands: Elsevier, 2022; p. 95–160.
  • Jang, M.-S.; Lee, Y.-M.; Kim, C.-H.; Lee, J.-H.; Kang, D.-W.; Kim, S.-J.; Lee, Y.-C. Triphenylmethane Reductase from Citrobacter sp. strain KCTC 18061P: Purification, Characterization, Gene Cloning, and Overexpression of a Functional Protein in Escherichia coli. Appl. Environ. Microbiol. 2005, 71, 7955–7960. DOI: 10.1128/AEM.71.12.7955-7960.2005.
  • Sperandio, F. F.; Huang, Y.-Y.; Hamblin, M. R. Antimicrobial Photodynamic Therapy to Kill Gram-Negative Bacteria. Recent Pat. Antiinfect. Drug Discov. 2013, 8, 108–120. DOI: 10.2174/1574891x113089990012.
  • Kasimova, K. R.; Sadasivam, M.; Landi, G.; Sarna, T.; Hamblin, M. R. Potentiation of Photoinactivation of Gram-Positive and Gram-Negative Bacteria Mediated by Six Phenothiazinium Dyes by Addition of Azide Ion. Photochem. Photobiol. Sci. 2014, 13, 1541–1548. DOI: 10.1039/c4pp00021h.
  • Priya, B.; Barman, S. R.; Dolanchapa, S.; et al. Enhanced Degradation of Ternary Dye Effluent by Developed Bacterial Consortium with RSM Optimization, ANN Modeling and Toxicity Evaluation. Desalin. Water Treat. 2017, 72, 249–265.
  • Cheriaa, J.; Khaireddine, M.; Rouabhia, M.; Bakhrouf, A. Removal of Triphenylmethane Dyes by Bacterial Consortium. Scientific World J. 2012, 2012, 1–9. DOI: 10.1100/2012/512454.
  • Kenawy, E.; Shabaka, A. A.; Abou‐Zeid, A. M.; Hassouna, M. S.; Elhiti, M. A. Effective Biological Treatment of Water Polluted with Coomassie Brilliant Blue and Methylene Blue Using Carbon Nanotube‐Supported Biodegradation. Env. Prog. Sustain. Energy 2021, 41, e13783. DOI: 10.1002/ep.13783.
  • Moutaouakkil, A.; Zeroual, Y.; Dzayri, F. Z.; Talbi, M.; Lee, K.; Blaghen, M. Decolorization of Azo Dyes with Enterobacter agglomerans Immobilized in Different Supports by Using Fluidized Bed Bioreactor. Curr. Microbiol. 2004, 48, 124–129. DOI: 10.1007/s00284-003-4143-0.
  • Galai, S.; Limam, F.; Marzouki, M. N. Decolorization of an Industrial Effluent by Free and Immobilized Cells of Stenotrophomonas maltophilia AAP56. Implementation of Efficient Down Flow Column Reactor. World J. Microbiol. Biotechnol. 2010, 26, 1341–1347. DOI: 10.1007/s11274-010-0306-x.
  • Kudlich, M.; Bishop, P. L.; Knackmuss, H.-J.; Stolz, A. Simultaneous Anaerobic and Aerobic Degradation of the Sulfonated Azo Dye Mordant Yellow 3 by Immobilized Cells from a Naphthalenesulfonate-Degrading Mixed Culture. Appl. Microbiol. Biotechnol. 1996, 46, 597–603. DOI: 10.1007/s002530050867.
  • Pazarlioglu, N. K.; Akkaya, A.; Akdogan, H. A.; Gungor, B. Biodegradation of Direct Blue 15 by Free and Immobilized Trametes versicolor. Water Environ. Res. 2010, 82, 579–585. DOI: 10.2175/106143009X12529484815999.
  • Domínguez, A.; Couto, S. R.; Sanroman, M. A. Dye Decolorization by Trametes hirsuta Immobilized into Alginate Beads. World J. Microbiol. Biotechnol. 2005, 21, 405–409. DOI: 10.1007/s11274-004-1763-x.
  • Saratale, R. G.; Saratale, G. D.; Chang, J. S.; Govindwar, S. P. Decolorization and Degradation of Reactive Azo Dyes by Fixed Bed Bioreactors Containing Immobilized Cells of Proteus vulgaris NCIM-2027. Biotechnol. Bioproc. E 2011, 16, 830–842. DOI: 10.1007/s12257-010-0468-2.
  • Abu Talha, M.; Goswami, M.; Giri, B. S.; Sharma, A.; Rai, B. N.; Singh, R. S. Bioremediation of Congo Red Dye in Immobilized Batch and Continuous Packed Bed Bioreactor by Brevibacillus parabrevis Using Coconut Shell Bio-Char. Bioresour. Technol. 2018, 252, 37–43. DOI: 10.1016/j.biortech.2017.12.081.
  • Bilal, M.; Iqbal, H. M. N.; Hu, H.; Wang, W.; Zhang, X. Enhanced Bio-Catalytic Performance and Dye Degradation Potential of Chitosan-Encapsulated Horseradish Peroxidase in a Packed Bed Reactor System. Sci. Total Environ. 2017, 575, 1352–1360. DOI: 10.1016/j.scitotenv.2016.09.215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.