146
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement of bacterial cellulose production by ethanol and lactic acid by using Gluconacetobacter kombuchae

, , , , & ORCID Icon

References

  • Blanco Parte, F. G.; Santoso, S. P.; Chou, C. C.; Verma, V.; Wang, H. T.; Ismadji, S.; Cheng, K. C. Current Progress on the Production, Modification, and Applications of Bacterial Cellulose. Crit Rev Biotechnol. 2020, 40, 397–414. DOI: 10.1080/07388551.2020.1713721.
  • Dutta, D.; Gachhui, R. Nitrogen-Fixing and Cellulose-Producing Gluconacetobacter kombuchae sp. nov., Isolated from Kombucha Tea. Int J Syst Evol Microbiol. 2007, 57, 353–357. DOI: 10.1099/ijs.0.64638-0.
  • Aritonang, H. F.; Kamea, O. E.; Koleangan, H.; Wuntu, A. D. Biotemplated Synthesis of Ag-ZnO Nanoparticles/Bacterial Cellulose Nanocomposites for Photocatalysis Application. Polym.-Plastic. Technol. Mater. 2020, 59, 1292–1299. DOI: 10.1080/25740881.2020.1738470.
  • El-Saied, H.; Basta, A. H.; Gobran, R. H. Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polym-Plast Technol Eng. 2004, 43, 797–820. DOI: 10.1081/PPT-120038065.
  • Weihua, Q.; Hong, R.; Qianhui, W. Production of Bacterial Cellulose from Enzymatic Hydrolysate of Kitchen Waste by Fermentation with Kombucha. Biomass Conv. Bioref. 2022, 12, 1–12. DOI: 10.1007/s13399-022-02903-5.
  • Torres, F. G.; Ccorahua, R.; Arroyo, J.; Troncoso, O. P. Enhanced Conductivity of Bacterial Cellulose Films Reinforced with NH4I-Doped Graphene Oxide. Polym-Plast Technol Mater. 2019, 58, 1585–1595. DOI: 10.1080/25740881.2018.1563135.
  • Urbina, L.; Corcuera, M. A.; Gabilondo, N.; Eceiza, A.; Retegi, A. A Review of Bacterial Cellulose: sustainable Production from Agricultural Waste and Applications in Various Fields. Cellulose. 2021, 28, 8229–8253. DOI: 10.1007/s10570-021-04020-4.
  • Lin, S. P.; Huang, S. H.; Ting, Y.; Hsu, H. Y.; Cheng, K. C. Evaluation of Detoxified Sugarcane Bagasse Hydrolysate by Atmospheric Cold Plasma for Bacterial Cellulose Production. Int J Biol Macromol. 2022, 204, 136–143. DOI: 10.1016/j.ijbiomac.2022.01.186.
  • Santoso, S. P.; Lin, S. P.; Wang, T. Y.; Ting, Y.; Hsieh, C. W.; Yu, R. C.; Angkawijaya, A. E.; Soetaredjo, F. E.; Hsu, H. Y.; Cheng, K. C. Atmospheric Cold Plasma-Assisted Pineapple Peel Waste Hydrolysate Detoxification for the Production of Bacterial Cellulose. Int J Biol Macromol. 2021, 175, 526–534. DOI: 10.1016/j.ijbiomac.2021.01.169.
  • Zhang, H.; Chen, C.; Zhu, C.; Sun, D. Production of Bacterial Cellulose by Acetobacter Xylinum: effects of Carbon/Nitrogen-Ratio on Cell Growth and Metabolite Production. Cellulose Chem. Technol. 2016, 50, 997–1003.
  • Li, Y.; Tian, C.; Tian, H.; Zhang, J.; He, X.; Ping, W.; Lei, H. Improvement of Bacterial Cellulose Production by Manipulating the Metabolic Pathways in Which Ethanol and Sodium Citrate Involved. Appl Microbiol Biotechnol. 2012, 96, 1479–1487. DOI: 10.1007/s00253-012-4242-6.
  • Hu, Y.; Catchmark, J. M. Influence of 1‐Methylcyclopropene (1‐MCP) on the Production of Bacterial Cellulose Biosynthesized by Acetobacter Xylinum under the Agitated Culture. Lett Appl Microbiol. 2010, 51, 109–113. DOI: 10.1111/j.1472-765X.2010.02866.x.
  • Lu, H.; Jia, Q.; Chen, L.; Zhang, L. Effect of Organic Acids on Bacterial Cellulose Produced by Acetobacter Xylinum. J. Microbiol. Biotechnol. 2016, 5, 1–6.
  • Keshk, S. M. Vitamin C Enhances Bacterial Cellulose Production in Gluconacetobacter xylinus. Carbohydr Polym. 2014, 99, 98–100. DOI: 10.1016/j.carbpol.2013.08.060.
  • Lu, Z.; Zhang, Y.; Chi, Y.; Xu, N.; Yao, W.; Sun, B. Effects of Alcohols on Bacterial Cellulose Production by Acetobacter Xylinum 186. World J Microbiol Biotechnol. 2011, 27, 2281–2285. DOI: 10.1007/s11274-011-0692-8.
  • Matsuoka, M.; Tsuchida, T.; Matsushita, K.; Adachi, O.; Yoshinaga, F. A Synthetic Medium for Bacterial Cellulose Production by Acetobacter Xylinum Subsp. sucrofermentans. Biosci. Biotechnol. Biochem. 1996, 60, 575–579. DOI: https://doi.org/10.1271/bbb.60.575.
  • Cielecka, I.; Ryngajłło, M.; Maniukiewicz, W.; Bielecki, S. Response Surface Methodology-Based Improvement of the Yield and Differentiation of Properties of Bacterial Cellulose by Metabolic Enhancers. Int J Biol Macromol. 2021, 187, 584–593. DOI: 10.1016/j.ijbiomac.2021.07.147.
  • Naritomi, T.; Kouda, T.; Yano, H.; Yoshinaga, F. Effect of Lactate on Bacterial Cellulose Production from Fructose in Continuous Culture. J. Ferment. Bioeng. 1998, 85, 89–95. DOI: 10.1016/S0922-338X(97)80360-1.
  • Hegde, S.; Bhadri, G.; Narsapur, K.; Koppal, S.; Oswal, P.; Turmuri, N.; Hungund, B. Statistical Optimization of Medium Components by Response Surface Methodology for Enhanced Production of Bacterial Cellulose by Gluconacetobacter Persimmonis. J Bioprocess Biotech. 2013, 4, 1–5.
  • Cielecka, I.; Szustak, M.; Gendaszewska-Darmach, E.; Kalinowska, H.; Ryngajłło, M.; Maniukiewicz, W.; Bielecki, S. Novel Bionanocellulose/?-Carrageenan Composites for Tissue Engineering. Appl. Sci. 2018, 8, 1352. DOI: 10.3390/app8081352.
  • Tiboni, M.; Grzybowski, A.; Passos, M.; Barison, A.; Liao, L. M.; Campos, F. R.; Pontarolo, R.; Fontana, J. D. The Use of Dyed Bacterial Cellulose to Monitor Cellulase Complex Activity. Cellulose. 2012, 19, 1867–1877. DOI: 10.1007/s10570-012-9787-0.
  • Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A. Bacterial Cellulose Production from Industrial Waste and by-Product Streams. Int J Mol Sci. 2015, 16, 14832–14849. DOI: 10.3390/ijms160714832.
  • Mittal, M.; Ahuja, S.; Yadav, A.; Aggarwal, N. K. Development of Poly (Hydroxybutyrate) Film Incorporated with Nano Silica and Clove Essential Oil Intended for Active Packaging of Brown Bread. Int J Biol Macromol 2023, 233, 123512. DOI: 10.1016/j.ijbiomac.2023.123512.
  • Ryngajłło, M.; Jacek, P.; Cielecka, I.; Kalinowska, H.; Bielecki, S. Effect of Ethanol Supplementation on the Transcriptional Landscape of Bionanocellulose Producer Komagataeibacter xylinus E25. Appl Microbiol Biotechnol 2019, 103, 6673–6688. DOI: 10.1007/s00253-019-09904-x.
  • Naritomi, T.; Kouda, T.; Yano, H.; Yoshinaga, F. Effect of Ethanol on Bacterial Cellulose Production from Fructose in Continuous Culture. J. Ferment. Bioeng. 1998, 85, 598–603.
  • Molina-Ramírez, C.; Enciso, C.; Torres-Taborda, M.; Zuluaga, R.; Gañán, P.; Rojas, O. J.; Castro, C. Effects of Alternative Energy Sources on Bacterial Cellulose Characteristics Produced by Komagataeibacter medellinensis. Int J Biol Macromol. 2018, 117, 735–741. DOI: 10.1016/j.ijbiomac.2018.05.195.
  • Jung, H. I.; Jeong, J. H.; Lee, O. M.; Park, G. T.; Kim, K. K.; Park, H. C.; Lee, S. M.; Kim, Y. G.; Son, H. J. Influence of Glycerol on Production and Structural–Physical Properties of Cellulose from Acetobacter sp. V6 Cultured in Shake Flasks. Bioresour Technol 2010, 101, 3602–3608. DOI: 10.1016/j.biortech.2009.12.111.
  • Ul-Islam, M.; Khan, T.; Park, J. K. Water Holding and Release Properties of Bacterial Cellulose Obtained by in Situ and Ex Situ Modification. Carbohydr. Polym. 2012, 88, 596–603. DOI: 10.1016/j.carbpol.2012.01.006.
  • Mohammadkazemi, F.; Doosthoseini, K.; Azin, M. Effect of Ethanol and Medium on Bacterial Cellulose (BC) Production by Gluconacetobacter xylinus (PTCC 1734). Cellul. Chem. Technol. 2015, 49, 455–462. DOI: 10.13140/RG.2.1.3415.5685.
  • Agustin, Y. E.; Padmawijaya, K. S. Effect of Acetic Acid and Ethanol as Additives on Bacterial Cellulose Production by Acetobacter xylinum. In IOP Conf. Ser: Earth Environ. Sci. 2018, 209, 012045. DOI: 10.1088/1755-1315/209/1/012045.
  • Huang, H. C.; Chen, L. C.; Lin, S. B.; Hsu, C. P.; Chen, H. H. In Situ Modification of Bacterial Cellulose Network Structure by Adding Interfering Substances during Fermentation. Bioresour Technol. 2010, 101, 6084–6091. DOI: 10.1016/j.biortech.2010.03.031.
  • Henning, A. L.; Catchmark, J. M. The Impact of Antibiotics on Bacterial Cellulose in Vivo. Cellulose. 2017, 24, 1261–1285. DOI: 10.1007/s10570-016-1169-6.
  • Thorat, M. N.; Dastager, S. G. High Yield Production of Cellulose by a Komagataeibacter rhaeticus PG2 Strain Isolated from Pomegranate as a New Host. RSC Adv 2018, 8, 29797–29805. DOI: 10.1039/c8ra05295f.
  • Oh, S. Y.; Yoo, D. I.; Shin, Y.; Kim, H. C.; Kim, H. Y.; Chung, Y. S.; Park, W. H.; Youk, J. H. Crystalline Structure Analysis of cellulose treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydr Res 2005, 340, 2376–2391. DOI: 10.1016/j.carres.2005.08.007.
  • Castro, C.; Zuluaga, R.; Putaux, J.-L.; Caro, G.; Mondragon, I.; Gañán, P. Structural Characterization of Bacterial Cellulose Produced by Gluconacetobacter swingsii sp. from Colombian Agroindustrial Wastes. Carbohydr Polym. 2011, 84, 96–102. DOI: 10.1016/j.carbpol.2010.10.072.
  • Wang, S. S.; Han, Y. H.; Ye, Y. X.; Shi, X. X.; Xiang, P.; Chen, D. L.; Li, M. Physicochemical Characterization of High-Quality Bacterial Cellulose Produced by Komagataeibacter sp. strain W1 and Identification of the Associated Genes in Bacterial Cellulose Production. RSC Adv 2017, 7, 45145–45155. DOI: 10.1039/.c7ra08391b.
  • Gorgieva, S.; Kokol, V. Synthesis and Application of New Temperature-Responsive Hydrogels Based on Carboxymethyl and Hydroxyethyl Cellulose Derivatives for the Functional Finishing of Cotton Knitwear. Carbohydr. Polym. 2011, 85, 664–673. DOI: 10.1016/j.carbpol.2011.03.037.
  • Kondo, T.; Rytczak, P.; Bielecki, S. Bacterial Nanocellulose Characterization. In: Gama, M.; Dourado, F.; Bielecki, S. (Eds.), Bacterial Nanocellulose, from Biotechnology to Bio-Economy. Amsterdam: Elsevier, 2016, pp. 59–71.
  • Vasconcelos, N. F.; Feitosa, J. P. A.; da Gama, F. M. P.; Morais, J. P. S.; Andrade, F. K.; de Souza, M. D. S. M.; de Freitas Rosa, M. Bacterial Cellulose Nanocrystals Produced under Different Hydrolysis Conditions: Properties and Morphological Features. Carbohydr. Polym. 2017, 155, 425–431. DOI: 10.1016/j.carbpol.2016.08.090.
  • Chen, S. Q.; Mikkelsen, D.; Lopez-Sanchez, P.; Wang, D.; Martinez-Sanz, M.; Gilbert, E. P.; Flanagan, B. M.; Gidley, M. J. Characterisation of Bacterial Cellulose from Diverse Komagataeibacter Strains and Their Application to Construct Plant Cell Wall Analogues. Cellulose. 2017, 24, 1211–1226. DOI: 10.1007/s10570-017-1203-3.
  • Zeng, X.; Liu, J.; Chen, J.; Wang, Q.; Li, Z.; Wang, H. Screening of the Common Culture Conditions Affecting Crystallinity of Bacterial Cellulose. J Ind Microbiol Biotechnol. 2011, 38, 1993–1999. DOI: 10.1007/s10295-011-0989-5.
  • Choi, S. M.; Shin, E. J. The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. Nanomaterials. 2020, 10, 406. DOI: 10.3390/nano10030406.
  • Singhania, R. R.; Patel, A. K.; Tseng, Y. S.; Kumar, V.; Chen, C. W.; Haldar, D.; Saini, J. K.; Dong, C. D. Developments in Bioprocess for Bacterial Cellulose Production. Bioresour Technol. 2022, 344, 126343. DOI: 10.1016/j.biortech.2021.126343.
  • Ebrahimi, E.; Babaeipour, V.; Meftahi, A.; Alibakhshi, S. Effects of Bio-Production Process Parameters on Bacterial Cellulose Mechanical Properties. J. Chem. Eng. Japan/JCEJ. 2017, 50, 857–861. DOI: 10.1252/jcej.15we301.
  • Campano, C.; Balea, A.; Blanco, A.; Negro, C. Enhancement of the Fermentation Process and Properties of Bacterial Cellulose: A Review. Cellulose. 2016, 23, 57–91. DOI: 10.1007/s10570-015-0802-0.
  • Ebrahimi, E.; Babaeipour, V.; Khanchezar, S. Effect of down-Stream Processing Parameters on the Mechanical Properties of Bacterial Cellulose. Iran Polym J. 2016, 25, 739–746. DOI: 10.1007/s13726-016-0462-4.
  • Cao, Y.; Lu, S.; Yang, Y. Production of Bacterial Cellulose from by-Product of Citrus Juice Processing (Citrus Pulp) by Gluconacetobacter hansenii. Cellulose. 2018, 25, 6977–6988. DOI: https://doi.org/10.1007/s10570-018-2056-0.
  • Chen, S. Q.; Lopez-Sanchez, P.; Wang, D.; Mikkelsen, D.; Gidley, M. J. Mechanical Properties of Bacterial Cellulose Synthesised by Diverse Strains of the Genus Komagataeibacter. Food Hydrocolloid. 2018, 81, 87–95. DOI: 10.1016/j.foodhyd.2018.02.031.
  • Astley, O. M.; Chanliaud, E.; Donald, A. M.; Gidley, M. J. Tensile Deformation of Bacterial Cellulose Composites. Int J Biol Macromol. 2003, 32, 28–35. DOI: 10.1016/S0141-8130(03)00022-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.