74
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Improving the production of recombinant L-Asparaginase-II in Escherichia coli by co-expressing catabolite repressor activator (cra) gene

&

References

  • Rosano, G. L.; Ceccarelli, E. A. Recombinant Protein Expression in Escherichia coli: advances and Challenges. Front Microbiol 2014, 5, 172. DOI: 10.3389/fmicb.2014.00172.
  • Tripathi, N. K.; Shrivastava, A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019, 7, 420. DOI: 10.3389/fbioe.2019.00420.
  • Rosano, G. L.; Morales, E. S.; Ceccarelli, E. A. New Tools for Recombinant Protein Production in Escherichia coli: A 5-Year Update. Protein Sci 2019, 28, 1412–1422. DOI: 10.1002/pro.3668.
  • Hoffmann, F.; Rinas, U. Stress Induced by Recombinant Protein Production in Escherichia coli. Adv. Biochem. Engin./Biotechnol 2004, 89, 73–92. DOI: 10.1007/b93994.
  • Carneiro, S.; Ferreira, E.; Rocha, I. Metabolic Responses to Recombinant Bioprocesses in Escherichia coli. J Biotechnol 2013, 164, 396–408. DOI: 10.1016/j.jbiotec.2012.08.026.
  • Sharma, A. K.; Mahalik, S.; Ghosh, C.; Singh, A. B.; Mukherjee, K. J. Comparative Transcriptomic Profile Analysis of Fed-Batch Cultures Expressing Different Recombinant Proteins in Escherichia coli. AMB Express 2011, 1, 33. DOI: 10.1186/2191-0855-1-33.
  • Singh, A. B.; Sharma, A. K.; Mukherjee, K. J. Analyzing the Metabolic Stress Response of Recombinant Escherichia coli Cultures Expressing Human Interferon-Beta in High Cell Density Fed Batch Cultures Using Time Course Transcriptomic Data. Mol Biosyst 2012, 8, 615–628. DOI: 10.1039/c1mb05414g.
  • Guerrero Montero, I.; Dolata, K. M.; Schlüter, R.; Malherbe, G.; Sievers, S.; Zühlke, D.; Sura, T.; Dave, E.; Riedel, K.; Robinson, C. Comparative Proteome Analysis in an Escherichia coli CyDisCo Strain Identifies Stress Responses Related to Protein Production, Oxidative Stress and Accumulation of Misfolded Protein. Microb Cell Fact 2019, 18, 19. DOI: 10.1186/s12934-019-1071-7.
  • Liu, Y.-Y.; Zhu, Y.; Wickremasinghe, H.; Bergen, P. J.; Lu, J.; Zhu, X.-Q.; Zhou, Q.-L.; Azad, M.; Nang, S. C.; Han, M.-L.; et al. Metabolic Perturbations Caused by the over-Expression of Mcr-1 in Escherichia coli. Front Microbiol 2020, 11, 588658. DOI: 10.3389/fmicb.2020.588658.
  • Saraswat, V.; Kim, D. Y.; Lee, J.; Park, Y.-H. Effect of Specific Production Rate of Recombinant Protein on Multimerization of Plasmid Vector and Gene Expression Level. FEMS Microbiol Lett 1999, 179, 367–373. DOI: 10.1111/j.1574-6968.1999.tb08751.x.
  • Kumar, J.; Bhat, S. U.; Rathore, A. S. Slow Post-Induction Specific Growth Rate Enhances Recombinant Protein Expression in Escherichia coli: Pramlintide Multimer and Ranibizumab Production as Case Studies. Process Biochem 2022, 114, 21–27. DOI: 10.1016/j.procbio.2022.01.009.
  • Neijssel, O.; Teixeira de Mattos, M.; Tempest, D. Growth Yield and Energy Distribution. Escherichia coli and Salmonella Typhimurium: cellular and Molecular Biology: Neidhardt, F. C., Curtiss, R., Eds.; American Society for Microbiology, Washington, DC, 1996; pp. 797–806.
  • Chilakamarry, C. R.; Sakinah, A. M. M.; Zularisam, A. W.; Pandey, A. Glycerol Waste to Value Added Products and Its Potential Applications. Syst Microbiol and Biomanuf 2021, 1, 378–396. DOI: 10.1007/s43393-021-00036-w.
  • Poblete-Castro, I.; Wittmann, C.; Nikel, P. I. Biochemistry, Genetics and Biotechnology of Glycerol Utilization in Pseudomonas Species. Microb Biotechnol 2020, 13, 32–53. DOI: 10.1111/1751-7915.13400.
  • Kopp, J.; Slouka, C.; Ulonska, S.; Kager, J.; Fricke, J.; Spadiut, O.; Herwig, C. Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3). Bioengineering 2017, 5, 1. DOI: 10.3390/bioengineering5010001.
  • Chiang, C.-J.; Ho, Y.-J.; Hu, M.-C.; Chao, Y.-P. Rewiring of Glycerol Metabolism in Escherichia coli for Effective Production of Recombinant Proteins. Biotechnol Biofuels 2020, 13, 1–9. DOI: 10.1186/s13068-020-01848-z.
  • Martínez-Gómez, K.; Flores, N.; Castañeda, H. M.; Martínez-Batallar, G.; Hernández-Chávez, G.; Ramírez, O. T.; Gosset, G.; Encarnación, S.; Bolivar, F. New Insights into Escherichia coli Metabolism: carbon Scavenging, Acetate Metabolism and Carbon Recycling Responses during Growth on Glycerol. Microb Cell Fact 2012, 11, 1–21. DOI: 10.1186/1475-2859-11-46.
  • Singh, A. B.; Mukherjee, K. J. Supplementation of Substrate Uptake Gene Enhances the Expression of rhIFN-β in High Cell Density Fed-Batch Cultures of Escherichia coli. Mol Biotechnol 2013, 54, 692–702. DOI: 10.1007/s12033-012-9611-y.
  • Guleria, R.; Jain, P.; Verma, M.; Mukherjee, K. J. Designing Next Generation Recombinant Protein Expression Platforms by Modulating the Cellular Stress Response in Escherichia coli. Microb Cell Fact 2020, 19, 1–17. DOI: 10.1186/s12934-020-01488-w.
  • Ramseier, T. Cra and the Control of Carbon Flux via Metabolic Pathways. Res Microbiol 1996, 147, 489–493. DOI: 10.1016/0923-2508(96)84003-4.
  • Shimada, T.; Yamamoto, K.; Ishihama, A. Novel Members of the Cra Regulon Involved in Carbon Metabolism in Escherichia coli. J Bacteriol 2011, 193, 649–659. DOI: 10.1128/jb.01214-10.
  • Mahalik, S.; Sharma, A. K.; Jain, P.; Mukherjee, K. J. Identifying Genomic Targets for Protein over-Expression by “Omics” Analysis of Quiescent Escherichia coli Cultures. Microb Cell Fact 2017, 16, 1–11. DOI: 10.1186/s12934-017-0744-3.
  • Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J. R.; Maciejewski, A.; Wishart, D. S. Heatmapper: web-Enabled Heat Mapping for All. Nucleic Acids Res 2016, 44, W147–W153. DOI: 10.1093/nar/gkw419.
  • Keseler, I. M.; Mackie, A.; Santos-Zavaleta, A.; Billington, R.; Bonavides-Martínez, C.; Caspi, R.; Fulcher, C.; Gama-Castro, S.; Kothari, A.; Krummenacker, M.; et al. The EcoCyc Database: reflecting New Knowledge about Escherichia coli K-12. Nucleic Acids Res 2017, 45, D543–D550. DOI: 10.1093/nar/gki108.
  • Khushoo, A.; Pal, Y.; Mukherjee, K. Optimization of Extracellular Production of Recombinant Asparaginase in Escherichia coli in Shake-Flask and Bioreactor. Appl Microbiol Biotechnol 2005, 68, 189–197. DOI: 10.1007/s00253-004-1867-0.
  • Bondioli, P.; Della Bella, L. An Alternative Spectrophotometric Method for the Determination of Free Glycerol in Biodiesel. Eur. J. Lipid Sci. Technol 2005, 107, 153–157. DOI: 10.1002/ejlt.200401054.
  • Iyer, M. S.; Pal, A.; Srinivasan, S.; Somvanshi, P. R.; Venkatesh, K. V. Global Transcriptional Regulators Fine-Tune the Translational and Metabolic Efficiency for Optimal Growth of Escherichia coli. mSystems 2021, 6, e00001-21. DOI: 10.1128/msystems.00001-21.
  • Donghyuk, K.; Sang Woo, S.; Hojung, N.; Gabriela, I. G.; Ye, G.; Bernhard, O. P. Systems Assessment of Transcriptional Regulation on Central Carbon Metabolism by Cra and CRP. bioRxiv 2016, 46, 2901–2917. DOI: 10.1101/080929.
  • Mahalik, S.; Sharma, A. K.; Mukherjee, K. J. Genome Engineering for Improved Recombinant Protein Expression in Escherichia coli. Microb. Cell Factories 2014, 13, 177. DOI: 10.1186/s12934-014-0177-1.
  • Lozano Terol, G.; Gallego-Jara, J.; Sola Martínez, R. A.; Martínez Vivancos, A.; Cánovas Díaz, M.; de Diego Puente, T. Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front Microbiol 2021, 12, 682001. DOI: 10.3389/fmicb.2021.682001.
  • Glick, B. R. Metabolic Load and Heterologous Gene Expression. Biotechnol Adv 1995, 13, 247–261. DOI: 10.1016/0734-9750(95)00004-a.
  • Wu, G.; Yan, Q.; Jones, J. A.; Tang, Y. J.; Fong, S. S.; Koffas, M. A. Metabolic Burden: cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends Biotechnol 2016, 34, 652–664. DOI: 10.1016/j.tibtech.2016.02.010.
  • Matsuoka, Y.; Shimizu, K. Metabolic Regulation in Escherichia coli in Response to Culture Environments via Global Regulators. Biotechnol J 2011, 6, 1330–1341. DOI: 10.1002/biot.201000447.
  • Pletnev, P. I.; Osterman, I. А.; Sergiev, P. V.; Bogdanov, A. А.; Dontsova, O. А. Survival Guide: Escherichia coli in the Stationary Phase. Acta Nat 2015, 7, 22–33. DOI: 10.32607/20758251-2015-7-4-22-33.
  • Guzman, L. M.; Belin, D.; Carson, M. J.; Beckwith, J. Tight Regulation, Modulation, and High-Level Expression by Vectors Containing the Arabinose PBAD Promoter. J Bacteriol 1995, 177, 4121–4130. DOI: 10.1128/jb.177.14.4121-4130.199.
  • Wong, M. S.; Wu, S.; Causey, T. B.; Bennett, G. N.; San, K.-Y. Reduction of Acetate Accumulation in Escherichia coli Cultures for Increased Recombinant Protein Production. Metab Eng 2008, 10, 97–108. DOI: 10.1016/j.ymben.2007.10.003.
  • Mahalik, S.; Sharma, A.; Das, D. R.; Mittra, D.; Mukherjee, K. J. Co-Expressing Leucine Responsive Regulatory Protein (Lrp) Enhances Recombinant L-Asparaginase-II Production in Escherichia coli. J Biotechnol 2022, 351, 99–108. DOI: 10.1016/j.jbiotec.2022.04.012.
  • Sharma, A. K.; Shukla, E.; Janoti, D. S.; Mukherjee, K. J.; Shiloach, J. A Novel Knock out Strategy to Enhance Recombinant Protein Expression in Escherichia coli. Microb Cell Fact 2020, 19, 148. DOI: 10.1186/s12934-020-01407-z.
  • Šiurkus, J.; Neubauer, P. Heterologous Production of Active Ribonuclease Inhibitor in Escherichia coli by Redox State Control and Chaperonin Coexpression. Microb Cell Fact 2011, 10, 65. DOI: 10.1186/1475-2859-10-65.
  • Skretas, G.; Georgiou, G. Simple Genetic Selection Protocol for Isolation of Overexpressed Genes That Enhance Accumulation of Membrane-Integrated Human G Protein-Coupled Receptors in Escherichia coli. Appl Environ Microbiol 2010, 76, 5852–5859. DOI: 10.1128/aem.00963-10.
  • Su, L.; Jiang, Q.; Yu, L.; Wu, J. Enhanced Extracellular Production of Recombinant Proteins in Escherichia coli by co-Expression with Bacillus cereus Phospholipase C. Microb Cell Fact 2017, 16, 24. DOI: 10.1186/s12934-017-0639-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.