163
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of media components for enhanced carotenoid production by Paracoccus marcusii RSPO1 and assessment of their cytotoxicity against A549 and vero cells

& ORCID Icon

References

  • Maoka, T. Carotenoids as Natural Functional Pigments. J Nat Med. 2020, 74, 1–16. DOI: 10.1007/s11418-019-01364-x.
  • Zia-Ul-Haq, M. Carotenoids: Structure and Function in the Human Body. 2021, DOI: 10.1007/978-3-030-46459-2.
  • Nonglait, D. L.; Gokhale, J. S. Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE). Food Bioprocess Technol. 2023, 16, 0123456789. DOI: 10.1007/s11947-023-03192-0.
  • Lai, C.-H.; Yan, T.-Y. Characteristics and Aerosol Size Distributions of Metal-Containing Paint Particles at a Spray-Painting Workplace. RSC Adv. 2016, 6, 113754–113761. DOI: 10.1039/C6RA20179B.
  • Saini, R. K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y. S.; Lee, J. H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—a Review of Recent Advancements. Antioxidants. 2022, 11, 795. DOI: 10.3390/antiox11040795.
  • Ambati, R. R.; Phang, S.-M.; Ravi, S.; Aswathanarayana, R. G. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review. Mar Drugs. 2014, 12, 128–152. DOI: 10.3390/md12010128.
  • Saini, R. K.; Keum, Y.-S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Crusio, W. E.; Dong, H.; Radeke, H. H.; Rezaei, N.; Xiao, J. Caroteinoids: Biosynthetic and Biofunctional Approaches; 2019.
  • López, G.-D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Crit Rev Anal Chem 2023, 53, 1239–1262. DOI: 10.1080/10408347.2021.2016366.
  • Keeling, P. J. The Number, Speed, and Impact of Plastid Endosymbioses in Eukaryotic Evolution. Annu Rev Plant Biol. 2013, 64, 583–607. DOI: 10.1146/annurev-arplant-050312-120144.
  • Uddin, M. R.; Roy, P.; Mandal, S. Culturable Bacterial Isolates from Arctic Soil Shows High Biotechnological Potential. J. Pure Appl. Microbiol. 2022, 16, 235–245. DOI: 10.22207/JPAM.16.1.13.
  • Ezhil, D.; Meignanalakshmi, S.; Haritha, B. Yellow Pigment from Fast-Growing Marine Soil Bacteria Citricoccus Sp. for Dyeing Cotton Fabrics. CJAST. 2022, 41, 24–34. DOI: 10.9734/cjast/2022/v41i413994.
  • Ramesh, C.; Tulasi, B. R.; Raju, M.; Thakur, N.; Dufossé, L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar. Drugs. 2021, 19, 308. DOI: 10.3390/md19060308.
  • da Conceição Santos, A. L.; Ferreira, A. C. A.; de Figueiredo, J. R. Potential Use of Bacterial Pigments as Anticancer Drugs and Female Reproductive Toxicity: A Review. Cienc. Anim. Bras. 2022, 23, 1–12. DOI: 10.1590/1809-6891v23e-72911E.
  • Martínez Andrade, K. A.; Lauritano, C.; Romano, G.; Ianora, A. Marine Microalgae with anti-Cancer Properties. Mar Drugs.. 2018, 16, 165. DOI: 10.3390/md16050165.
  • Ram, S.; Mitra, M.; Shah, F.; Tirkey, S. R.; Mishra, S. Bacteria as an Alternate Biofactory for Carotenoid Production: A Review of Its Applications, Opportunities and Challenges. J. Funct. Foods. 2020, 67, 103867. DOI: 10.1016/j.jff.2020.103867.
  • Zhang, C.; Seow, V. Y.; Chen, X.; Too, H.-P. Multidimensional Heuristic Process for High-Yield Production of Astaxanthin and Fragrance Molecules in Escherichia coli. Nat Commun. 2018, 9, 1858. DOI: 10.1038/s41467-018-04211-x.
  • Li, C.; Swofford, C. A.; Sinskey, A. J. Modular Engineering for Microbial Production of Carotenoids. Metab Eng Commun. 2020, 10, e00118. DOI: 10.1016/j.mec.2019.e00118.
  • Ansari, M. S.; Gupta, N. P. A Comparison of Lycopene and Orchidectomy vs Orchidectomy Alone in the Management of Advanced Prostate Cancer. BJU Int. 2003, 92, 375–378; discussion 378. discussion 378. DOI: 10.1046/j.1464-410x.2003.04370.x.
  • Luo, M.; Zhou, L.; Huang, Z.; Li, B.; Nice, E. C.; Xu, J.; Huang, C. Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel). 2022, 11, 1128. DOI: 10.3390/antiox11061128.
  • Hanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell. 2011, 144, 646–674. DOI: 10.1016/j.cell.2011.02.013.
  • Vaughan, R. A.; Garcia-Smith, R.; Dorsey, J.; Griffith, J. K.; Bisoffi, M.; Trujillo, K. A. Tumor Necrosis Factor Alpha Induces Warburg-like Metabolism and is Reversed by anti-Inflammatory Curcumin in Breast Epithelial Cells. Int. J. Cancer. 2013, 133, 2504–2510. DOI: 10.1002/ijc.28264.
  • Mendivil-Perez, M.; Jimenez-Del-Rio, M.; Velez-Pardo, C. Glucose Starvation Induces Apoptosis in a Model of Acute T Leukemia Dependent on Caspase-3 and Apoptosis-Inducing Factor: A Therapeutic Strategy. Nutr Cancer/ 2013, 65, 99–109. DOI: 10.1080/01635581.2013.741751.
  • Tanaka, T.; Shnimizu, M.; Moriwaki, H. Cancer Chemoprevention by Carotenoids. Molecules. 2012, 17, 3202–3242. DOI: 10.3390/molecules17033202.
  • Sahu, R.; Dewanjee, S. Carotenoids as Antidiabetic Agents. 2021, Chapter 14, 513–532. DOI: 10.1007/978-3-030-46459-2_14.
  • Naik, R.; Gupte, S. Characterization of Pigment Produced by High Carotenoid Yielding Bacteria Paracoccus marcusii RSPO1 and Evaluation of Its anti-Diabetic, anti-Microbial and Antioxidant Properties. Nat Prod Res. 2023, 1–10. DOI: 10.1080/14786419.2023.2208358.
  • Šesták, Z., Britton, G., Liaaen-Jensen, S., Pfander, H. Carotenoids. Handbook. Photosynthetica, 2004, 42, 186. DOI: 10.1023/B:PHOT.0000040641.40049.19.
  • Bhosale, P.; Larson, A. J.; Bernstein, P. S. Factorial Analysis of Tricarboxylic Acid Cycle Intermediates for Optimization of Zeaxanthin Production from Flavobacterium multivorum. J. Appl. Microbiol. 2004, 96, 623–629. DOI: 10.1111/j.1365-2672.2004.02197.x.
  • Bhandari, P. R. Crocus sativus L. (Saffron) for Cancer Chemoprevention: A Mini Review. J Tradit Complement Med. 2015, 5, 81–87. DOI: 10.1016/j.jtcme.2014.10.009.
  • Sowmya, R.; Sachindra, N. M. Carotenoid Production by Formosa Sp. KMW, a Marine Bacteria of Flavobacteriaceae Family: Influence of Culture Conditions and Nutrient Composition. Biocatal. Agric. Biotechnol. 2015, 4, 559–567. DOI: 10.1016/j.bcab.2015.08.018.
  • Mukherjee, S.; Das, P.; Sivapathasekaran, C.; Sen, R. Enhanced Production of Biosurfactant by a Marine Bacterium on Statistical Screening of Nutritional Parameters. Biochem. Eng. J 2008, 42, 254–260. DOI: 10.1016/j.bej.2008.07.003.
  • Desai, K. M.; Survase, S. A.; Saudagar, P. S.; Lele, S. S.; Singhal, R. S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. DOI: 10.1016/j.bej.2008.05.009.
  • Mahata, C.; Ray, S.; Das, D. Optimization of Dark Fermentative Hydrogen Production from Organic Wastes Using Acidogenic Mixed Consortia. Energy Convers. Manag. 2020, 219, 113047. DOI: 10.1016/j.enconman.2020.113047.
  • Rafigh, S. M.; Yazdi, A. V.; Vossoughi, M.; Safekordi, A. A.; Ardjmand, M. Optimization of Culture Medium and Modeling of Curdlan Production from Paenibacillus polymyxa by RSM and ANN. Int J Biol Macromol. 2014, 70, 463–473. DOI: 10.1016/j.ijbiomac.2014.07.034.
  • Pyter, W.; Grewal, J.; Bartosik, D.; Drewniak, L.; Pranaw, K. Pigment Production by Paracoccus Spp. Strains through Submerged Fermentation of Valorized Lignocellulosic Wastes. Fermentation. 2022, 8, 440. DOI: 10.3390/fermentation8090440.
  • Liu, S.; Li, X.; Zhang, G.; Zhang, J. Effect of Magnesium Ion on Crt Gene Expression in Improving Carotenoid Yield of Rhodobacter sphaeroides. Arch. Microbiol. 2015, 197, 1101–1108. DOI: 10.1007/s00203-015-1150-z.
  • Saejung, C.; Apaiwong, P. Enhancement of Carotenoid Production in the New Carotenoid-Producing Photosynthetic Bacterium Rhodopseudomonas faecalis PA2. Biotechnol. Bioproc. E 2015, 20, 701–707. DOI: 10.1007/s12257-015-0015-2.
  • Gutiérrez-Barranquero, J. A.; Parages, M. L.; Dobson, A. D. W.; Reen, F. J.; O'Gara, F. Genome Sequence of Paracoccus Sp. JM45, a Bacterial Strain Isolated from a Marine Sponge with a Dual Quorum Sensing Inhibition Activity. Microbiol. Resour. Announc. 2019, 8, 1–3. DOI: 10.1128/MRA.01496-18.
  • Kalathinathan, P.; Pulicherla, K.; Sain, A.; Gomathinayagam, S.; Jayaraj, R.; Thangaraj, S.; Kodiveri Muthukaliannan, G. New Alkali Tolerant β-Galactosidase from Paracoccus Marcusii KGPA Promising Biocatalyst for the Synthesis of Oligosaccharides Derived from Lactulose (Oslu), the New Generation Prebiotics. Bioorg. Chem. 2021, 115, 105207. DOI: 10.1016/j.bioorg.2021.105207.
  • Afra, S.; Makhdoumi, A.; Matin, M. M.; Feizy, J. A Novel Red Pigment from Marine Arthrobacter Sp. G20 with Specific Anticancer Activity. J. Appl. Microbiol. 2017, 123, 1228–1236. DOI: 10.1111/jam.13576.
  • Buzzini, P.; Martini, A.; Gaetani, M.; Turchetti, B.; Pagnoni, U. M.; Davoli, P. Optimization of Carotenoid Production by Rhodotorula graminis DBVPG 7021 as a Function of Trace Element Concentration by Means of Response Surface Analysis. Enzyme Microb. Technol. 2005, 36, 687–692. DOI: 10.1016/j.enzmictec.2004.12.028.
  • Kim, H.; Xue, X. Detection of Total Reactive Oxygen Species in Adherent Cells by 2’,7’-Dichlorodihydrofluorescein Diacetate Staining. J Vis Exp. 2020, 160, 1–5. DOI: 10.3791/60682.
  • Mazoch, J.; Kuňák, M.; Kučera, I.; van Spanning, R. J. M. Fine-Tuned Regulation by Oxygen and Nitric Oxide of the Activity of a Semi-Synthetic FNR-Dependent Promoter and Expression of Denitrification Enzymes in Paracoccus denitrificans. Microbiology (Reading). 2003, 149, 3405–3412. DOI: 10.1099/mic.0.26546-0.
  • Chatzivasileiou, A. O.; Ward, V.; Edgar, S. M.; Stephanopoulos, G. Two-Step Pathway for Isoprenoid Synthesis. Proc Natl Acad Sci U S A. 2019, 116, 506–511. DOI: 10.1073/pnas.1812935116.
  • Zhao, J.; Li, Q.; Sun, T.; Zhu, X.; Xu, H.; Tang, J.; Zhang, X.; Ma, Y. Engineering Central Metabolic Modules of Escherichia coli for Improving β-Carotene Production. Metab Eng. 2013, 17, 42–50. DOI: 10.1016/j.ymben.2013.02.002.
  • Park, S. Y.; Binkley, R. M.; Kim, W. J.; Lee, M. H.; Lee, S. Y. Metabolic Engineering of Escherichia coli for High-Level Astaxanthin Production with High Productivity. Metab Eng. 2018, 49, 105–115. DOI: 10.1016/j.ymben.2018.08.002.
  • Garfinkel, L.; Garfinkel, D. Magnesium Regulation of the Glycolytic Pathway and the Enzymes Involved. Magnesium. 1985, 4, 60–72.
  • Pooja, K. K.; Gomathinayagam, S.; Gothandam, K. M. Draft Genome Sequence of a Highly Pigmented Bacterium Paracoccus marcusii KGP Capable of Producing Galacto-Oligosaccharides Synthesising Enzyme. Curr Microbiol. 2021, 78, 634–641. DOI: 10.1007/s00284-020-02326-3.
  • Somashekar, D.; Joseph, R. Inverse Relationship between Carotenoid and Lipid Formation in Rhodotorula gracilis according to the C/N Ratio of the Growth Medium. World J. Microbiol. Biotechnol. 2000, 16, 491–493. DOI: 10.1023/A:1008917612616.
  • Kunkel, H. O. The Effect of Zinc on the Oxidation of Krebs Cycle Intermediates by Rat Liver and Kidney Homogenates. Arch Biochem Biophys. 1951, 31, 251–261. DOI: 10.1016/0003-9861(51)90212-3.
  • McCully, A. L.; Onyeziri, M. C.; LaSarre, B.; Gliessman, J. R.; McKinlay, J. B. Reductive Tricarboxylic Acid Cycle Enzymes and Reductive Amino Acid Synthesis Pathways Contribute to Electron Balance in a Rhodospirillum rubrum Calvin-Cycle Mutant. Microbiology (Reading). 2020, 166, 199–211. DOI: 10.1099/mic.0.000877.
  • Petushkova, E.; Mayorova, E.; Tsygankov, A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel). 2021, 11, 711. DOI: 10.3390/life11070711.
  • Sauer, U.; Eikmanns, B. J. The PEP—Pyruvate—Oxaloacetate Node as the Switch Point for Carbon Flux Distribution in Bacteria: We Dedicate This Paper to Rudolf K. Thauer, Director of the Max-Planck-Institute for Terrestrial Microbiology in Marburg, Germany, on the Occasion of His 65th. FEMS Microbiol Rev. 2005, 29, 765–794. DOI: 10.1016/j.femsre.2004.11.002.
  • Giani, M.; Montoyo-Pujol, Y. G.; Peiró, G.; Martínez-Espinosa, R. M. Haloarchaeal Carotenoids Exert an in Vitro Antiproliferative Effect on Human Breast Cancer Cell Lines. Sci Rep. 2023, 13, 7148. DOI: 10.1038/s41598-023-34419-x.
  • Krzywik, J.; Mozga, W.; Aminpour, M.; Janczak, J.; Maj, E.; Wietrzyk, J.; Tuszyński, J. A.; Huczyński, A. Synthesis, Antiproliferative Activity and Molecular Docking Studies of Novel Doubly Modified Colchicine Amides and Sulfonamides as Anticancer Agents. Molecules. 2020, 25, 1789. DOI: 10.3390/molecules25081789.
  • Rickardson, L.; Kutvonen, E.; Orasniemi, S.; Högberg, M.; Kallio, M. J.; Rehnmark, S. Evaluation of the Antitumor Activity of NOV202, a Novel Microtubule Targeting and Vascular Disrupting Agent. Drug Des Devel Ther. 2017, 11, 1335–1351. DOI: 10.2147/DDDT.S133189.
  • Tanasawet, S.; Sukketsiri, W.; Chonpathompikunlert, P.; Chonpathompikunlert, P.; Klaypradit, W.; Sroyraya, M.; Hutamekalin, P. Apoptotic Effect of Astaxanthin from White Shrimp Shells on Lung Cancer A549 Cells. Trop. J. Pharm Res. 2020, 19, 1835–1842. DOI: 10.4314/tjpr.v19i9.6.
  • Sowmya, P. R.-R.; Arathi, B. P.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Astaxanthin from Shrimp Efficiently Modulates Oxidative Stress and Allied Cell Death Progression in MCF-7 Cells Treated Synergistically with β-Carotene and Lutein from Greens. Food Chem Toxicol. 2017, 106, 58–69. DOI: 10.1016/j.fct.2017.05.024.
  • Shin, J.; Song, M. H.; Oh, J. W.; Keum, Y. S.; Saini, R. K. Pro‐Oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants (Basel). 2020, 9, 532. DOI: 10.3390/antiox9060532.
  • Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S. K. Monitoring ZEO Apoptotic Potential in 2D and 3D Cell Cultures and Associated Spectroscopic Evidence on Mode of Interaction with DNA. Sci Rep. 2017, 7, 2553. DOI: 10.1038/s41598-017-02633-z.
  • Ribeiro, D.; Freitas, M.; Silva, A. M. S.; Carvalho, F.; Fernandes, E. Antioxidant and Pro-Oxidant Activities of Carotenoids and Their Oxidation Products. Food Chem Toxicol. 2018, 120, 681–699. DOI: 10.1016/j.fct.2018.07.060.
  • Arathi, B. P.; Sowmya, P. R.-R.; Kuriakose, G. C.; Vijay, K.; Baskaran, V.; Jayabaskaran, C.; Lakshminarayana, R. Enhanced Cytotoxic and Apoptosis Inducing Activity of Lycopene Oxidation Products in Different Cancer Cell Lines. Food Chem Toxicol. 2016, 97, 265–276. DOI: 10.1016/j.fct.2016.09.016.
  • El-Agamey, A.; MCGarvey, D. J. The Reactivity of Carotenoid Radicals with Oxygen. Free Radic Res. 2007, 41, 295–302. DOI: 10.1080/10715760601087558.
  • Eghbaliferiz, S.; Iranshahi, M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother Res. 2016, 30, 1379–1391. DOI: 10.1002/ptr.5643.
  • Beutner, S.; Bloedorn, B.; Frixel, S.; Hernández Blanco, I.; Hoffmann, T.; Martin, H.; Mayer, B.; Noack, P.; Ruck, C.; Schmidt, M.; et al. Quantitative Assessment of Antioxidant Properties of Natural Colorants and Phytochemicals: Carotenoids, Flavonoids, Phenols and Indigoids. The Role of β-Carotene in Antioxidant Functions. J Sci Food Agric. 2001, 81, 559–568. DOI: 10.1002/jsfa.849.
  • Gupte, A.; Mumper, R. J. Elevated Copper and Oxidative Stress in Cancer Cells as a Target for Cancer Treatment. Cancer Treat Rev. 2009, 35, 32–46. DOI: 10.1016/j.ctrv.2008.07.004.
  • Senthil, K.; Aranganathan, S.; Nalini, N. Evidence of Oxidative Stress in the Circulation of Ovarian Cancer Patients. Clin Chim Acta. 2004, 339, 27–32. DOI: 10.1016/j.cccn.2003.08.017.
  • Black, H. S.; Boehm, F.; Edge, R.; Truscott, T. G. The Benefits and Risks of Certain Dietary Carotenoids That Exhibit Both anti- and Pro-Oxidative Mechanisms—a Comprehensive Review. Antioxidants. 2020, 9, 264. DOI: 10.3390/antiox9030264.
  • Jomova, K.; Valko, M. Health Protective Effects of Carotenoids and Their Interactions with Other Biological Antioxidants. Eur J Med Chem. 2013, 70, 102–110. DOI: 10.1016/j.ejmech.2013.09.054.
  • Johnson, J. D. Do Carotenoids Serve as Transmembrane Radical Channels? Free Radic Biol Med. 2009, 47, 321–323. DOI: 10.1016/j.freeradbiomed.2009.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.