126
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Structure‐Retention Correlation in Liquid Chromatography for Pharmaceutical Applications

&
Pages 761-789 | Received 28 Aug 2006, Accepted 21 Nov 2006, Published online: 07 Mar 2007

References

  • Hadjipavlou‐Litina , D. , Garg , R. and Hansch , C. 2004 . Comparative quantitative structure‐activity relationship studies (QSAR) on non‐benzodiazepine compounds binding to benzodiazepine receptor (BzR) . Chem. Rev. , 104 : 3751 – 3793 .
  • Dudek , A. Z. , Arodz , T. and Galvez , J. 2006 . Computational methods in developing quantitative‐activity relationships (QSAR): a review . Comb. Chem. & High Throughput Screening , 9 : 213 – 228 .
  • Sutherland , J. J. , O'Brien , L. A. and Weaver , D. F. 2004 . A comparison of methods for modeling quantitative structure‐activity relationships . J. Med. Chem. , 47 : 5541 – 5554 .
  • Hanai , T. 1991 . Structure‐retention correlation in liquid chromatography . J. Chromatogr. A , 550 : 313 – 324 .
  • Xia , Y. , Guo , Y. , Wang , H. , Wang , Q. and Zuo , Y. 2005 . Quantitative structure‐retention relationships of benzoylphenylureas on polystyrene‐octadecene‐encapsulated zirconia stationary phase in reversed‐phase high performance liquid chromatography . J. Sep. Sci. , 28 : 73 – 77 .
  • Wang , Q. S. and Zhang , L. 1999 . Review of research on quantitative structure‐retention relationships in thin‐layer chromatography . J. Liq. Chromatogr. Rel. Technol. , 22 : 1 – 14 .
  • Dimov , N. 2005 . “ Quantitative structure‐retention relationship by TLC ” . In Encyclopedia of Chromatography Edited by: Cazes , J. 1408 – 1411 . New York : Taylor & Francis .
  • Hsieh , M. M. and Dorsey , J. G. 1993 . Accurate determination of log k′w in reversed‐phase liquid chromatography. Implications for quantitative structure‐retention relationship . J. Chromatogr. A , 631 : 63 – 78 .
  • Rimmer , C. A. , Simmons , C. R. and Dorsey , J. G. 2002 . The measurement and meaning of void volumes in reversed‐phase liquid chromatography . J. Chromatogr. A , 965 : 219 – 232 .
  • Guha , R. and Jurs , P. C. 2005 . Determining the validity of a QSAR model–a classification approach . J. Chem. Inf. Model. , 45 : 65 – 73 .
  • Al‐Haj , M. A. , Kaliszan , R. and Buszewski , B. 2001 . QSRR with model analytes as a means of an objective evaluation of chromatographic columns . J. Chromatogr. Sci. , 39 : 29 – 38 .
  • Waterbeemd , H. , Van de Carter , R. E. , Grassy , G. , Kubinskyi , H. , Martin , Y. C. , Tute , M. S. and Willett , P. 1997 . Glossary of terms used in computational drug design . Pure & Appl. Chem. , 69 : 1137 – 1152 .
  • Xue , L. and Bajorath , J. 2000 . Molecular descriptors in chemoinformatics, computational combinatorial chemistry and virtual screening . Comb. Chem. & High Throughput Screenining , 3 : 363 – 372 .
  • Jinno , K. 2001 . Study on retention in liquid chromatography . Chromatography , 22 : 1 – 9 .
  • Kerelson , M. 2000 . Molecular Descriptors in QSAR/QSPR New York : John Wiley & Sons Inc. .
  • Fujita , T. , Iwasa , J. and Hanch , C. 1964 . A new substituent constant π derived from partition coefficients . J. Am. Chem. Soc. , 86 : 5176 – 5180 .
  • Medvedovici , A. , Sandra , P. , Kot , A. and David , F. 1997 . Supercritical Fluid Chromatography with Packed Columns Edited by: Anton , K. and Berger , C. Vol. 75 , New York : Marcel Dekker Inc. . Chapter 6, 161–194
  • Sandra , P. , Medvedovici , A. and David , F. 2003 . Comprehensive pSFC x pSFC – MS for the characterization of triglycerides in vegetable oils. LC‐GC Europe . 12 : 2 – 4 .
  • Hansch , C. , Leo , A. and Taft , R. W. 1991 . A surwey of Hammet substituent constants and resonance and field parameters . Chem. Rev. , 91 : 165 – 195 .
  • Carrasco Velar , R. , Padron , J. A. and Galvez , J. 2004 . Definition of a novel atomic index in QSAR: the refractopological state . J. Pharm. Pharmaceut. Sci. , 7 : 19 – 26 .
  • Wise , S. A. , Bonnet , W. J. , Guenther , F. R. and May , W. E. 1981 . A relationship between RP chromatography and elution of PAHs . J. Chromatogr. Sci. , 18 : 457 – 465 .
  • Kier , L. B. and Hall , L. H. 2002 . The meaning of molecular connectivity: a bimolecular accessibility model . Croat. Chem. Acta , 75 : 371 – 382 .
  • Radecki , A. , Lamparczyk , H. and Kaliszan , R. 1979 . A relationship between the retention indices on nematic and isotropic phases and the shape of PAHs . Chromatographia , 12 : 595 – 600 .
  • Franczkiewicz , R. and Braun , W. 1998 . Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules . J. Comp. Chem. , 19 : 319 – 333 .
  • Lewis , D. F.V. 1999 . Frontier orbitals in chemical and biological activity: quantitative relationships and mechanistic implications . Drug Metab. Rev. , 31 : 755 – 816 .
  • Pompe , M. and Randic , M. 2006 . Anticonnectivity”: a challenge for structure‐property‐activity studies . J. Chem. Inf. Mod. , 46 : 2 – 8 .
  • Katritzky , A. R. and Gordeeva , E. R. 1993 . Traditional topological indexes vs electronic, geometrical and combined molecular descriptors in QSAR/QSPR research . J. Chem. Inf. Comput. Sci. , 33 : 835 – 857 .
  • Karelson , M. , Lobanov , V. S. and Katritzky , A. R. 1996 . Quantum‐chemical descriptors in QSAR/QSPR studies . Chem. Rev. , 96 : 1027 – 1043 .
  • Devillers , J. and Balaban , A. T. 1999 . Topological Indices and Related Descriptors in QSAR and QSPR Amsterdam : Gordon and Breach .
  • Todeschini , R. and Consonni , V. 2000 . The Handbook of Molecular Descriptors , Series of Methods and Principles in Medicinal Chemistry Edited by: Mannhold , R. , Kubinyi , H. and Timmerman , H. Vol. 11 , New York : Wiley-VCH .
  • Hanai , T. 2005 . Chromatography in silico, basic concept in reversed‐phase liquid chromatography . Anal. Bioanal. Chem. , 382 : 708 – 717 .
  • Sander , L. C. , Lippa , K. A. and Wise , S. A. 2005 . Order and disorder in alkyl stationary phase . Anal. Bioanal. Chem. , 383 : 646 – 668 .
  • Croes , K. , Steffens , A. , Marchand , D. H. and Snyder , L. R. 2005 . Relevance of π‐π and dipole‐dipole interactions for retention on cyano and phenyl columns in reversed‐phase liquid chromatography . J. Chromatogr. A , 1098 : 123 – 130 .
  • Marchand , D. H. , Croes , K. , Dolan , J. W. and Snyder , L. R. 2005 . Column selectivity in reversed‐phase liquid chromatography. VII. Cyanopropyl columns . J. Chromatogr. A , 1062 : 57 – 64 .
  • Clark , M. 2005 . Generalized fragment‐substructure based property prediction method . J. Chem. Inf. Model. , 45 : 30 – 38 .
  • Turowski , M. , Yamakawa , N. , Meller , J. , Kimata , K. , Ikegami , T. , Hosoya , K. , Tanaka , N. and Thornton , E. R. 2003 . Deuterium isotope effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase . J. Am. Chem. Soc. , 125 : 13836 – 13849 .
  • Avdeef , A. 2003 . Absorption and Drug Development: Solubility, Permeability and Charge State 67 – 90 . Hoboken : Wiley‐Interscience .
  • Katritzky , A. R. , Tamm , K. , Kuanar , M. , Fara , D. C. , Oliferenko , A. , Oliferenco , P. , Huddleston , J. G. and Rogers , R. D. 2004 . Aqueous biphasic systems. Partitioning of organic molecules: a QSPR treatment . J. Chem. Inf. Comput. Sci. , 44 : 136 – 142 .
  • Caron , G. , Steyaert , G. , Pagliara , A. , Reymond , F. , Crivori , P. , Gaillard , P. , Carrupt , P. , Avdeef , A. , Comer , J. , Box , K. J. , Girault , H. H. and Testa , B. 1999 . Structure‐lipophilicity relationships of neutral and protonated β‐blockers. I. Intra‐ and intermolecular effects in isotropic solvent systems . Helv. Chim. Acta , 82 : 1211 – 1222 .
  • Escuder‐Gilabert , L. , Bermudez‐Saldana , J. M. , Villanueva‐Camanas , R. M. , Medina‐Hernadez , M. J. and Sagrado , S. 2004 . Reliability of the retention factor estimations in liquid chromatography . J. Chromatogr. A , 1033 : 247 – 255 .
  • Renner , R. 2002 . The Ko,w controversy . Environ. Sci. Technol. , 413A
  • Poole , S. K. and Poole , C. F. 2003 . Separation methods for estimating octanol–water partition coefficients . J. Chromatogr. B , 797 : 3 – 19 .
  • Leo , A. 1993 . Calculating log Poct from structures . Chem. Rev. , 93 : 1281 – 1306 .
  • Meylan , W. M. and Howard , P. H. 1995 . Atom/fragment contribution method for estimating octanol‐water partition coefficients . J. Pharm. Sci. , 84 : 83 – 92 .
  • Nikitas , P. , Pappa‐Louisi , A. and Agrafiotou , P. 2002 . Effects of the organic modifier concentration on the retention in reversed‐phase liquid chromatography. I. General semi‐thermodynamic treatment for adsorption and partition mechanisms . J. Chromatogr. A , 946 : 9 – 32 .
  • Nikitas , P. , Pappa‐Louisi , A. and Agrafiotou , P. 2002 . Effects of the organic modifier concentration on the retention in reversed‐phase liquid chromatography. II. Tests using various simplified models . J. Chromatogr. A , 946 : 33 – 45 .
  • Neue , U. D. 2006 . Nonlinear retention relationships in reversed‐phase chromatography . Chromatographia , 63 : S45 – S53 .
  • Medvedovici , A. , Albu , F. and David , V. 2005 . Selection of the retention mechanism for separation of amitryptiline and the main related impurities by liquid chromatography . Rev. Roum. Chim. , 50 : 225 – 234 .
  • David , V. , Bala , C. and Rotariu , L. 2004 . Thermodynamic parameters of the reversed‐phase liquid chromatography retention for some lipid‐soluble vitamins . Chem. Anal. (Warsaw) , 49 : 191 – 199 .
  • Howkins , D. M. 2004 . The problem of overfitting . J. Chem. Inf. Comput. Sci. , 44 : 1 – 12 .
  • Dai , J. , Yao , S. , Ding , Y. and Wang , L. 1999 . Retention of substituted indole compounds on RP‐HPLC: correlation with molecular connectivity indices and quantum chemical descriptors . J. Liq. Chromatogr. Rel. Technol. , 22 : 2271 – 2282 .
  • Jakab , A. , Schubert , G. , Prodan , M. and Forgacs , E. 2002 . Determination of the retention behavior of barbituric acid derivatives in reversed‐phase HPLC by using quantitative structure‐retention relationships . J. Chromatogr. B , 770 : 227 – 236 .
  • Jakab , A. , Schubert , G. , Prodan , M. and Forgacs , E. 2002 . PCA, followed by two‐dimensional nonlinear mapping and cluster analysis, versus multilinear regression in QSRR . J. Liq. Chromatogr. Rel. Technol. , 25 : 1 – 16 .
  • Agatonovic‐Kustrin , A. , Zecevic , M. and Zivanovic , LJ. 1999 . Use of modeling in structure‐retention relationships of diuretics in RP‐HPLC . J. Pharm. Biomed. Anal. , 21 : 95 – 103 .
  • Tham , S. Y. and Agatonovic‐Kustrin , A. 2002 . Application of the artificial neural network in quantitative structure‐gradient elution retention relationship of phenylcarbamyl amino acids derivatives . J. Pharm. Biomed. Anal. , 28 : 581 – 590 .
  • Loukas , Y. 2001 . Radial basis function networks in LC: improved structure‐retention relationships compared to principal components regression (PCR) and nonlinear partial least squares regression (PLS) . J. Liq. Chromatogr. Rel. Technol. , 24 : 2239 – 2256 .
  • Xiang , Y. H. , Liu , M. C. , Zhang , X. Y. , Zhang , R. S. , Hu , Z. D. , Fan , B. T. , Doucet , J. P. and Panaye , A. 2002 . Quantitative prediction of LC retention of N‐benzylideneanilines based on quantum chemical parameters and radial basis function neural network . J. Chem. Inf. Comput. Sci. , 42 : 592 – 597 .
  • Song , M. , Breneman , C. M. , Bi , J. , Sukumar , N. , Bennett , K. P. , Cramer , S. and Tugcus , N. 2002 . Prediction of protein retention times in anion‐exchange chromatography systems using support vector regression . J. Chem. Inf. Comput. Sci. , 42 : 1347 – 1357 .
  • Liu , H. X. , Xue , C. X. , Zhang , R. S. , Yao , X. J. , Liu , M. C. , Hu , Z. D. and Fan , B. T. 2004 . Quantitative prediction of log k of peptides in HPLC based on molecular descriptors by using the heuristic method and support vector machine . J. Chem. Inf. Comput. Sci. , 44 : 1979 – 1986 .
  • Luco , J. M. , Salinas , A. P. , Ferriero , A. A.J. , Vazquez , R. N. , Raba , J. and Marchevsky , E. 2003 . Immobilized artificial membrane chromatography: quantitative structure‐retention relationships of structurally diverse drugs . J. Chem. Inf. Comput. Sci. , 43 : 2129 – 2136 .
  • Detroyer , A. , Stokbroekx , S. , Bohets , H. , Lorreyne , W. , Timmerman , P. , Verboven , P. , Massart , D. L. and Vander‐Heyden , Y. 2004 . Fast monolithic micellar LC: an alternative drug permeability assessing method for high‐throughput screening . Anal. Chem. , 76 : 7304 – 7309 .
  • Varga‐Defterdarovic , L. , Horvat , S. , Skuric , M. and Horvat , J. 1994 . Correlation of structure and retention behavior in reversed‐phase HPLC. II. Methionine‐enkephalin‐related glycoconjugates . J. Chromatogr. A , 687 : 107 – 112 .
  • Yang , S. , Bumgarner , J. G. , Kruk , L. F.R. and Khaledi , M. G. 1996 . Quantitative structure‐activity relationships studies with micellar electrokinetic chromatography influence of surfactant type and mixed micelles on estimation of hydrophobicity and bioavailability . J. Chromatogr. A , 721 : 323 – 335 .
  • Momose , T. , Yamaguchi , Y. , Iida , T. , Goto , J. and Nambara , T. 1998 . Structure‐retention correlation of isomeric bile acids in inclusion HPLC with methyl beta‐cyclodextrin . Lipids , 33 : 101 – 108 .
  • Luo , H. and Cheng , Y. K. 2005 . Quantitative structure‐retention relationship of nucleic‐acid bases revisited. CoMFA on purine RPLC retention . QSAR & Comb. Sci. , 24 : 968 – 975 .
  • Welerowicz , T. and Buszewski , B. 2005 . The effect of stationary phase on lipophilicity determination of β‐blockers using reversed‐phase chromatographic systems . Biomed. Chromatogr. , 19 : 725 – 736 .
  • Sarbu , C. and Todor , S. 1998 . Determination of lipophilicity of some non‐steroidal anti‐inflamatory agents and their relationships by using principal component analysis based on thin‐layer chromatographic retention data . J. Chromatogr. A , 822 : 263 – 269 .
  • Espinoza , S. , Bosch , E. and Roses , M. 2000 . Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile‐water mobile phases . Anal. Chem. , 72 : 5193 – 5200 .
  • Espinoza , S. , Bosch , E. and Roses , M. 2002 . Retention of ionizable compounds in HPLC. IX. Modeling retention in reversed‐phase LC as a function of pH and solvent composition with acetonitrile‐water mobile phase . J. Chromatogr. A , 947 : 47 – 58 .
  • David , V. , Albu , F. and Medvedovici , A. 2005 . Retention behavior of metformin and related impurities in ion‐pairing liquid chromatography . J. Liq. Chromatogr. Rel. Technol. , 28 : 83 – 98 .
  • David , V. and Medvedovici , A. 2005 . Partition model applied to the retention process of basic analytes in reversed‐phase and ion‐pairing liquid chromatography . Rev. Roum. Chim. , 50 : 837 – 843 .
  • Neue , U. D. , Phoebe , C. H. , Tran , K. , Cheng , Y. F. and Lu , Z. 2001 . Dependence of reversed‐phase retention of ionizable analytes on pH, concentration of organic solvent and silanol activity . J. Chromatogr. A , 925 : 49 – 67 .
  • Wiczling , P. , Markuszewski , M. J. and Kaliszan , R. 2004 . Determination of pKa by pH gradient reversed‐phase HPLC . Anal. Chem. , 76 : 3069 – 3077 .
  • Kogej , T. and Muresan , S. 2005 . Database mining for pKa predicting . Curr. Drug Disc. Technol. , 2 : 221 – 229 .
  • Espinoza , S. , Bosch , E. and Roses , M. 2002 . Acid‐base constants of neutral bases in acetonitrile mixtures . Anal. Chim. Acta , 454 : 157 – 166 .
  • Vervoort , R. J.M. , Ruyter , E. , Debets , A. J.J. , Claessens , H. A. , Cramers , C. A. and de Jong , G. J. 2001 . Characterisation of reversed phase LC stationary phases for the analytes of basic pharmaceuticals: eluent properties and comparison of empirical test methods . J. Chromatogr. A , 931 : 67 – 79 .
  • Bartolini , M. , Bertucci , C. , Gotti , R. , Tumiatti , V. , Covalli , A. , Recanatini , M. and Andrisana , V. 2002 . Determination of the dissociation constants (pKa) of basic acetylcholinesterase inhibitors by RP‐LC . J. Chromatogr. A , 958 : 59 – 67 .
  • Wilson , D. M. , Wang , X. , Walsh , E. and Rourick , R. A. 2001 . High throughput log D using liquid chromatography‐mass spectrometry. Comb . Chem. & High Throughput Screening , 4 : 511 – 519 .
  • Ruiz‐Angel , M. J. , Carda‐Broch , S. , Garcia‐Alvarez‐Coque , M. C. and Berthod , A. 2005 . Effect of ionization and the nature of the mobile phase in QSRR studies . J. Chromatogr. A , 1063 : 25 – 34 .
  • David , V. , Albu , F. and Medvedovici , A. 2004 . Structure‐retention correlation of some oxicam drugs in reversed‐phase liquid chromatography . J. Liq. Chromatogr. Rel. Technol. , 27 : 965 – 984 .
  • Torres‐Lapasio , J. R. , Garcia‐Alvarez‐Coque , M. C. , Roses , M. and Bosch , E. 2002 . Prediction of the retention in reverse‐phase liquid chromatography using solute‐mobile phase‐stationary phase polarity parameters . J. Chromatogr. A , 955 : 19 – 34 .
  • Bosque , R. , Sales , J. , Bosch , E. , Roses , M. , Garcia‐Alvarez‐Coque , M. C. and Torres‐Lapasio , J. R. 2003 . A QSPR study of the p solute polarity parameter to estimate retention in HPLC . J. Chem. Inf. Comput. Sci. , 43 : 1240 – 1247 .
  • Pyka , A. and Sliwiok , J. 2004 . Use of traditional structural descriptors in QSRR analysis of nicotinic acid esters . J. Liq. Chromatogr. Rel. Technol. , 27 : 785 – 798 .
  • Bacsek , T. and Kaliszan , R. 2002 . Combination of linear solvent strength model and QSRRs as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography . J. Chromatogr. A , 962 : 41 – 55 .
  • Kaliszan , R. , Baczek , T. , Bucinski , A. , Buszewski , B. and Sztupecka , M. 2003 . Prediction of gradient retention from the linear solvent strength (LSS) model, quantitative structure‐retention relationships (QSRR) and artificial neural networks (ANN) . J. Sep. Sci. , 26 : 271 – 282 .
  • Deanda , F. , Smith , K. M. , Liu , J. and Pearlman , R. S. 2004 . GSSI, a general model for solute‐solvent interactions . I. Description of the model. Molec. Pharm. , 1 : 23 – 39 .
  • Wagoner , J. A. and Baker , N. A. 2006 . Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms . Proc. Natl. Acad. Sci. USA , 103 : 8331 – 8336 .
  • Okur , A. , Wickstrom , L. , Layten , M. , Geney , R. , Song , K. , Hornak , V. and Simmerling , C. 2006 . Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model . J. Chem. Theory Comput. , 2 : 420 – 433 .
  • Bordner , A. J. , Cavasotto , C. N. and Abagyan , R. A. 2002 . Accurate transferable model for water, n‐octanol, and n‐hexadecane solvation free energies . J. Phys. Chem. B , 106 : 11009 – 11015 .
  • Ranatunga , R. P.J. and Carr , P. W. 2000 . A study of the enthalpy and entropy contributions of the stationary phase in RP‐LC . Anal. Chem. , 72 : 5679 – 5692 .
  • Szepesy , L. 2002 . Effect of molecular interactions on retention and selectivity in reversed‐phase LC . J. Chromatogr., A , 960 : 69 – 83 .
  • Vonk , E. C. , Lewandowska , K. , Claessens , H. A. , Kaliszan , R. and Cramers , C. A. 2003 . Quantitative structure‐retention relationships in reversed‐phase LC using several stationary and mobile phase . J. Sep. Sci. , 26 : 777 – 792 .
  • Wilson , N. S. , Nelson , M. D. , Dolan , J. W. , Snyder , L. R. , Wolcott , R. G. and Carr , P. W. 2002 . Column selectivity in reversed‐phase LC. I. A general quantitative relationship . J. Chromatogr. A , 961 : 171 – 193 .
  • Wilson , N. S. , Nelson , M. D. , Dolan , J. W. , Snyder , L. R. and Carr , P. W. 2002 . Column selectivity in reversed‐phase LC. II. Effects of a change in conditions . J. Chromatogr. A , 961 : 195 – 215 .
  • Wilson , N. S. , Dolan , J. W. , Snyder , L. R. , Carr , P. W. and Sander , L. C. 2002 . Column selectivity in reversed‐phase LC. III. The physico‐chemical basis of selectivity . J. Chromatogr. A , 961 : 217 – 236 .
  • Jover , J. , Bosque , R. and Sales , J. 2004 . Determination of Abraham solute parameters from molecular structure . J. Chem. Inf. Comput. Sci. , 44 : 1098 – 1106 .
  • Oliferenko , A. A. , Oliferenko , P. V. , Huddleston , J. G. , Rogers , R. D. , Palyulin , V. A. , Zefirov , N. S. and Katritzky , A. R. 2004 . Theoretical scales of hydrogen bond acidity and basicity for application in QSAR/QSPR studies and drug design. Partitioning of aliphatic compounds . J. Chem. Inf. Comput. Sci. , 44 : 1042 – 1055 .
  • Li , J. 2004 . Prediction of internal standards in RP‐LC. IV. Correlation and prediction of retention in reversed‐phase ion‐pair chromatography based on linear solvation energy relationships . Anal. Chim. Acta , 522 : 113 – 126 .
  • Suzuki , T. , Timofei , S. , Iuroas , B. E. , Uray , G. , Verdino , P. and Fabian , W. M.F. 2001 . QSERR for chromatographic separation of arylalkylcarbinols on Pirkle type stationary phases . J. Chromatogr. A , 922 : 13 – 23 .
  • Lipkowitz , K. B. 1994 . Theoretical studies of brush‐type chiral stationary phases . J. Chromatogr. A , 666 : 493 – 503 .
  • Booth , T. D. , Azzaoui , K. and Wainer , I. W. 1997 . Prediction of chiral chromatographic separations using combined multivariate regression and neural networks . Anal. Chem. , 69 : 3879 – 3883 .
  • Del Rio , A. , Piras , P. and Roussel , C. 2006 . Enantiophore modeling in 3D‐QSAR. A data mining application on Whelk‐O1 chiral stationary phase . Chirality , 7 : 498 – 508 .
  • 1999 . SYBYL Molecular Modeling Software St. Louis , MO : Tripos Associated .
  • Clark , T. 1992 . VAMP 4.4, Erlangen Vectorized Molecular Orbital Package Nurnberg , , Germany : Computer‐Chemie‐Centrum, Univ. Erlangen .
  • Gedeck , P. , Rohde , B. and Bartels , C. 2006 . QSAR – How good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets . J. Chem. Inf. Model. , on‐line 3 Aug 2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.