229
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of Amino Acid Neurotransmitters in Rat Brain Microdialysis Samples by High-Performance Liquid Chromatography with Coulometric Detection

, , , , &

References

  • Fagg, G. E.; Foster, A. C. Amino-acid Neurotransmitters and Their Pathways in the Mammalian Central Nervous-System. Neuroscience 1983, 9, 701–719.
  • Burton, M. D.; Kazemi, H. Neurotransmitters in Central Respiratory Control. Respir. Physiol. 2000, 122, 111–121.
  • Tadros, M. G.; Khalifa, A. E.; Abdel-Naim, A. B.; Arafa, H. M. M. Neuroprotective Effect of Taurine in 3-Nitropropionic Acid-induced Experimental Animal Model of Huntington’s Disease Phenotype. Pharmacol. Biochem. Behav. 2005, 82, 574–582.
  • Luchetti, S.; Huitinga, I.; Swaab, D. F. Neurosteroid and Gaba-A Receptor Alterations in Alzheimer’s Disease, Parkinson’s Disease and Multiple Sclerosis. Neuroscience 2011, 191, 6–21.
  • Gonzalez-Burgos, G.; Hashimoto, T.; Lewis, D. A. Alterations of cortical GABA Neurons and Network Oscillations in Schizophrenia. Curr. Psychiatry Rep. 2010, 12, 335–344.
  • Brouns, R.; Van Hemelrijck, A.; Drinkenburg, W. H.; Van Dam, D.; De Surgeloose, D.; De Deyn, P. P. Excitatory Amino Acids and Monoaminergic Neurotransmitters in Cerebrospinal Fluid of Acute Ischemic Stroke Patients. Neurochem. Int. 2010, 56, 865–870.
  • Quintana, P.; Alberi, S.; Hakkoum, D.; Muller, D. Glutamate Receptor Changes Associated with Transient Anoxia/Hypoglycaemia in Hippocampal Slice Cultures. Eur. J. Neurosci. 2006, 23, 975–983.
  • Morales, I.; Sabate, M.; Rodriguez, M. Striatal Glutamate Induces Retrograde Excitotoxicity and Neuronal Degeneration of Intralaminar Thalamic Nuclei: Their Potential Relevance for Parkinson’s Disease. Eur. J. Neurosci. 2013, 38, 2172–2182.
  • Kaur, G.; Sharma, A.; Xu, W. J.; Gerum, S.; Alldred, M. J.; Subbanna, S.; Basavarajappa, B. S.; Pawlik, M.; Ohno, M.; Ginsberg, S. D.; Wilson, D. A.; Guilfoyle, D. N.; Levy, E. Glutamatergic Transmission Aberration: A Major Cause of Behavioral Deficits in a Murine Model of Down’s Syndrome. J. Neurosci. 2014, 34, 5099–5106.
  • Drew, K. L.; Pehek, E. A.; Rasley, B. T.; Ma, Y. L.; Green, T. K. Sampling Glutamate and GABA with Microdialysis: Suggestions on How to Get the Dialysis Membrane Closer to the Synapse. J. Neurosci. Methods 2004, 140, 127–131.
  • Navak, P.; Chatterjee, A. K. Effects of Aluminium Exposure on Brain Glutamate and GABA Systems: An Experimental Study in Rats. Food Chem. Toxicol. 2001, 39, 1285–1289.
  • Tuma, P.; Sustkova-Fiserova, M.; Opekar, F.; Pavlicek, V.; Malkova, K. Large-Volume Sample Stacking for in Vivo Monitoring of Trace Levels of Gamma-aminobutyric Acid, Glycine and Glutamate in Microdialysates of Periaqueductal Gray Matter by Capillary Electrophoresis with Contactless Conductivity Detection. J. Chromatogr. A 2013, 1303, 94–99.
  • Song, P.; Mabrouk, O. S.; Hershey, N. D.; Kennedy, R. T. In Vivo Neurochemical Monitoring Using Benzoyl Chloride Derivatization and Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2012, 84, 412–419.
  • Yao, T.; Okano, G. Simultaneous Determination of L-glutamate, Acetylcholine and Dopamine in Rat Brain by a Flow-Injection Biosensor System with Microdialysis Sampling. Anal. Sci. 2008, 24, 1469–1473.
  • Sandlin, Z. D.; Shou, M.; Shackman, J. G.; Kennedy, R. T. Microfluidic Electrophoresis Chip Coupled to Microdialysis for in Vivo Monitoring of Amino Acid Neurotransmitters. Anal. Chem. 2005, 77, 7702–7708.
  • Bowser, M. T.; Kennedy, R. T. In Vivo Monitoring of Amine Neurotransmitters Using Microdialysis with On-Line Capillary Electrophoresis. Electrophoresis 2001, 22, 3668–3676.
  • Buck, K.; Voehringer, P.; Ferger, B. Rapid Analysis of GABA and Glutamate in Microdialysis Samples Using High Performance Liquid Chromatography and Tandem Mass Spectrometry. J. Neurosci. Methods 2009, 182, 78–84.
  • Nyitrai, G.; Kekesi, K. A.; Juhasz, G. Extracellular Level of GABA and Glu: In Vivo Microdialysis-HPLC Measurements. Curr. Top. Med. Chem. 2006, 6, 935–940.
  • Rabouan, S.; Olivier, J. C.; Guillemin, H.; Barthes, D. Validation of HPLC Analysis of Aspartate and Glutamate Neurotransmitters Following o-Phthaldialdehyde-Mercaptoethanol Derivatization. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1797–1808.
  • Perry, M.; Li, Q.; Kennedy, R. T. Review of Recent Advances in Analytical Techniques for the Determination of Neurotransmitters. Anal. Chim. Acta 2009, 653, 1–22.
  • Piepponen, T. P.; Skujins, A. Rapid and Sensitive Step Gradient Assays of Glutamate, Glycine, Taurine and Gamma-Aminobutyric Acid by High-Performance Liquid Chromatography-Fluorescence Detection with o-Phthalaldehyde-Mercaptoethanol Derivatization with an Emphasis on Microdialysis Samples. J. Chromatogr. B 2001, 757, 277–283.
  • Devall, A. J.; Blake, R.; Langman, N.; Smith, C. G. S.; Richards, D. A.; Whitehead, K. J. Monolithic Column-Based Reversed-Phase Liquid Chromatography Separation for Amino Acid Assay in Microdialysates and Cerebral Spinal Fluid. J. Chromatogr. B 2007, 848, 323–328.
  • Brennan, P. A.; Schellinck, H. M.; De la Riva, C.; Kendrick, K. M.; Keverne, E. B. Changes in Neurotransmitter Release in the Main Olfactory Bulb Following an Olfactory Conditioning Procedure in Mice. Neuroscience 1998, 87, 583–590.
  • Yamamoto, K.; Sato, K.; Chikuma, T.; Kato, T. A Highly Sensitive and Stable Detection of Acetylcholine by HPLC-Osmium-Horseradish Peroxidase Redox Polymer Electrode Coated on a Gold Radial Flow Ring Disk. Anal. Chim. Acta 2004, 521, 209–213.
  • Yao, X.; Wang, Y. T.; Chen, G. Simultaneous Determination of am Aminothiols, Ascorbic Acid and Uric Acid in Biological Samples by Capillary Electrophoresis with Electrochemical Detection. Biomed. Chromatogr. 2007, 21, 520–526.
  • Ishide, T.; Maher, T. J.; Pearce, W. J.; Nauli, S. M.; Chaiyakul, P.; Ally, A. Simultaneous Glutamate and Gamma-Aminobutyric Acid Release within Ventrolateral Medulla During Skeletal Muscle Contraction in Intact and Barodenervated Rats. Brain Res. 2001, 923, 137–146.
  • Lillaney, R.; Maher, T. J.; Chaiyakul, P.; Ally, A. Changes in Extracellular Glutamate and Pressor Response During Muscle Contraction Following AMPA-Receptor Blockade in the RVLM and CVLM. Brain Res. 1999, 844, 164–173.
  • Molnar-Perl, I. Derivatization and Chromatographic Behavior of the o-Phthaldialdehyde Amino Acid Derivatives Obtained with Various SH-Group-Containing Additives. J. Chromatogr. A 2001, 913, 283–302.
  • Chan, S. W.; Lin, G.; Yamamoto, K.; Yew, D. T. W.; Rudd, J. A. Simultaneous Determination of Amino Acids in Discrete Brain Areas in Suncus murinus by High Performance Liquid Chromatography with Electrochemical Detection. J. Pharmaceut. Biomed. 2010, 53, 705–709.
  • Monge-Acuna, A. A.; Fornaguera-Trias, J. A High Performance Liquid Chromatography Method with Electrochemical Detection of Gamma-Aminobutyric Acid, Glutamate and Glutamine in Rat Brain Homogenates. J. Neurosci. Methods 2009, 183, 176–181.
  • Tcherkas, Y. V.; Kartsova, L. A.; Krasnova, I. N. Analysis of Amino Acids in Human Serum by Isocratic Reverse-Phase High-Performance Liquid Chromatography with Electrochemical Detection. J. Chromatogr. A 2001, 913, 303–308.
  • Smith, S.; Sharp, T. Measurement of GABA in Rat-Brain Microdialysates Using o-Phthaldialdehyde Sulfite Derivatization and High-Performance Liquid-Chromatography with Electrochemical Detection. J. Chromatogr. B. 1994, 652, 228–233.
  • Rowley, H. L.; Martin, K. F.; Marsden, C. A. Determination of in Vivo Amino Acid Neurotransmitters by High-Performance Liquid Chromatography with o-Phthalaldehyde-Sulphite Derivatisation. J. Neurosci. Methods 1995, 57, 93–99.
  • Zhang, S.; Takeda, Y.; Hagioka, S.; Takata, K.; Aoe, H.; Nakatsuka, H.; Yokoyama, M.; Morita, K. Measurement of GABA and Glutamate in Vivo Levels with High Sensitivity and Frequency. Brain Res. Protoc. 2005, 14, 61–66.
  • Sauvinet, V.; Parrot, S.; Benturquia, N.; Bravo-Moraton, E.; Renaud, B.; Denoroy, L. In Vivo Simultaneous Monitoring of Gamma-Aminobutyric Acid, Glutamate, and L-Aspartate Using Brain Microdialysis and Capillary Electrophoresis with Laser-Induced Fluorescence Detection: Analytical Developments and in Vitro/in Vivo Validations. Electrophoresis 2003, 24, 3187–3196.
  • Rea, K.; Cremers, T. I. F. H.; Westerink, B. H. C. HPLC Conditions are Critical for the Detection of GABA by Microdialysis. J. Neurochem. 2005, 94, 672–679.
  • Brunjes, P. C.; Illig, K. R.; Meyer, E. A. A Field Guide to the Anterior Olfactory Nucleus (Cortex). Brain Res. Rev. 2005, 50, 305–335.
  • Tin-Tin-Win-Shwe; Mitsushima, D.; Yamamoto, S.; Fukushima, A.; Funabashi, T.; Kobayashi, T.; Fujimaki, H. Changes in Neurotransmitter Levels and Proinflammatory Cytokine mRNA Expressions in the Mice Olfactory Bulb Following Nanoparticle Exposure. Toxicol. Appl. Pharmacol. 2008, 226, 192–198.
  • Guevara-Guzman, R.; Barrera-Mera, B.; de la Riva, C.; Kendrick, K. M. Release of Classical Transmitters and Nitric Oxide in the Rat Olfactory Bulb, Evoked by Vaginocervical Stimulation and Potassium, Varies with the Oestrus Cycle. Eur. J. Neurosci. 2000, 12, 80–88.
  • Shang, Y.; Dluzen, D. E. Nisoxetine Infusion into the Olfactory Bulb Enhances the Capacity for Male Rats to Identify Conspecifics. Neuroscience 2001, 104, 957–964.
  • Zachar, G.; Wagner, Z.; Tabi, T.; Balint, E.; Szoko, E.; Csillag, A. Differential Changes of Extracellular Aspartate and Glutamate in the Striatum of Domestic Chicken Evoked by High Potassium or Distress: An in Vivo Microdialysis Study. Neurochem. Res. 2012, 37, 1730–1737.
  • Marti, M.; Guerrini, R.; Beani, L.; Bianchi, C.; Morari, M. Nociceptin/Orphanin FQ Receptors Modulate Glutamate Extracellular Levels in the Substantia Nigra Pars Reticulata. A Microdialysis Study in the Awake Freely Moving Rat. Neuroscience 2002, 112, 153–160.
  • Ferraro, L.; O’Connor, W. T.; Glennon, J.; Tomasini, M. C.; Bebe, B. W.; Tanganelli, S.; Antonelli, T. Evidence for a Nucleus Accumbens CCK2 Receptor Regulation of Rat Ventral Pallidal GABA Levels—A Dual Probe Microdialysis Study. Life Sci. 2000, 68, 483–496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.