548
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Chromatographic behavior of selected dyes on silica and cellulose micro-TLC plates: Potential application as target substances for extraction, chromatographic, and/or microfluidic systems

&

References

  • Pool, C. Instrumental Thin-Layer Chromatography. Amsterdam: Elsevier, 2015.
  • Sherma, J.; Fried, B. Handbook of Thin-Layer Chromatography. New York: Marcel Dekker, 2003.
  • Bezuidenhout, L. W.; Brett, M. J. Ultrathin Layer Chromatography on Nanostructured Thin Films. J. Chromatogr. A 2008, 1183, 179–185.
  • Reinholt, S. J.; Sonnenfeldt, A.; Naik, A.; Frey, M. W.; Baeumner, A. J. Developingnew Materials for Paper-based Diagnostics Using Electrospun Nanofibers. Anal. Bioanal. Chem. 2014, 406, 3297–3304.
  • Srivastava, M. High-Performance Thin-Layer Chromatography (HPTLC). Berlin: Springer-Verlag, 2011.
  • Bielicka-Daszkiewicz, V.; Voelkel, A.; Rusińska-Roszak, D.; Zarzycki, P. K. Estimation of the Breakthrough Volume of Selected Steroids for C-18 Solid-Phase Extraction Sorbent Using Retention Data from Micro-Thin Layer Chromatography. J. Sep. Sci. 2013, 36, 1104–1111.
  • Zarzycki, P. K.; Zarzycka, M. B. Evaluation of the Water and Organic Liquids Extraction Efficiency of the Spirulina maxima Dyes Using Thermostated Micro-Thin-Layer Chromatography. J. AOAC Int. 2008, 91(5), 1196–1202.
  • Zarzycki, P. K.; Włodarczyk, E.; Zarzycka, M. B.; Głód, B. K. Optimization of a Solid-Phase Extraction Protocol for Fractionation of Selected Steroids Using Retention Data from Micro Thin-Layer Chromatography. Anal. Sci. 2009, 25(7), 935–939.
  • Głód, B. K.; Wantusiak, P. M.; Piszcz, P.; Lewczuk, E.; Zarzycki, P. K. Application of Micro-TLC to the Total Antioxidant Potential (TAP) Measurement. Food Chem. 2015, 173, 749–754.
  • Suszyński, Z.; Zarzycki, P. K. New Approach for Sensitive Photothermal Detection of C60 and C70 Fullerenes on Micro-TLC Plates. Anal. Chim. Acta. 2015, 863, 70–77.
  • Włodarczyk, E.; Baran, M. J.; Ślączka, M. M.; Portka, J. K.; Zarzycki, P. K. Fingerprinting of Soot Dust Materials Using Micro-TLC. J. Liquid Chromatogr. Rel. Technol. 2014, 37, 2846–2856.
  • Zarzycki, P. K.; Ohta, H.; Harasimiuk, F. B.; Jinno, K. Fast Separation and Quantification of C60 and C70 Fullerenes Using Thermostated Micro Thin-Layer Chromatography. Anal. Sci. 2007, 23, 1391–1396.
  • Zarzycki, P. K.; Ślączka, M. M.; Zarzycka, M. B.; Bartoszuk, M. A.; Włodarczyk, E.; Baran, M. J. Temperature-Controlled Micro-TLC: A Versatile Green Chemistry and Fast Analytical Tool for Separation and Preliminary Screening of Steroids Fraction from Biological and Environmental Samples. J. Steroids Biochem. Mol. Biol. 2011, 127, 418–427.
  • Zarzycki, P. K.; Zarzycka, M. B.; Clifton, V. L.; Adamski, J.; Głód, B. K. Low Parachor Solvents Extraction and Thermostated Micro-TLC Separation for Fast Screening and Classification of Spirulina from Pharmaceutical Formulations and Food Samples. J. Chromatogr. A 2011, 1218, 5694–5704.
  • Zarzycki, P. K.; Ślączka, M. M.; Włodarczyk, E.; Baran, M. J. Micro-TLC Approach for Fast Screening of Environmental Samples Derived from Surface and Sewage Waters. Chromatographia 2013, 76, 1249–1259.
  • Zarzycki, P. K. A New Miniaturized Planar Chromatography. Chromatographia 2013, 76, 1197–1199.
  • Lisowski, P.; Zarzycki, P. K. Microfluidic Paper-based Analytical Devices (μPADs) and Micrototal Analysis Systems (μTAS)—Development, Applications and Future Trends. Chromatographia 2013, 76, 1201–1214.
  • Sayar, S.; Özdemir, Y. First-Derivative Spectrophotometric Determination of Ponceau 4R, Sunset Yellow and Tartrazine in Confectionery Products. Food Chem. 1998, 61(3), 367–372.
  • Tsutsumi, K.; Ohga, K. Analysis of Writing Ink Dyestuffs by TLC and FT-IR and Its Application to Forensic Science. Anal. Sci. 1998, 14, 269–274.
  • Roux, C.; Novotny, M.; Evans, I.; Lennard, C. A Study to Investigate the Evidential Value of Blue and Black Ballpoint Pen Inks in Australia. Forensic Sci. Int. 1999, 101, 167–176.
  • Cserháti, T.; Forgács, E.; Morais, H.; Mota, T. Classification of Chili Powders by Thin-Layer Chromatography and Principal Component Analysis. J. Biochem. Biophys. Methods 2000, 45, 221–229.
  • Ohno, T.; Mikami, E.; Matsumoto, H. dentification of Oil-Soluble Coal Tar Dyes in Cosmetics Using Reversed-Phase TLC/Scanning Densitometry. J. Health Sci. 2003, 49, 401–404.
  • Morsy, F. A.; El-sherbiny, S. I.; Awadalla, M. A Systematic Approach to Egyptian Ballpoint Ink Analysis for Forensic Science Application. Forensic Sci. J. 2005, 4, 1–13.
  • El-Shaer, N. S.; Badr, J. M.; Aboul-Ela, M. A.; Gohar, Y. M. Determination of Lawsone in Henna Powders by High Performance Thin Layer Chromatography. J. Sep. Sci. 2007, 30, 3311–3315.
  • Weyermann, C.; Marquis, R.; Mazzella, W.; Spengler, B. Differentiation of Blue Ballpoint Pen Inks by Laser Desorption Ionization Mass Spectrometry and High-Performance Thin-Layer Chromatography. J. Forensic Sci. 2007, 52, 216–220.
  • Causin, V.; Casamassima, R.; Marega, C.; Maida, P.; Schiavone, S.; Marigo, A.; Villari, A. The Discrimination Potential of Ultraviolet-Visible Spectrophotometry, Thin Layer Chromatography, and Fourier Transform Infrared Spectroscopy for the Forensic Analysis of Black and Blue Ballpoint Inks. J. Forensic Sci. 2008, 53, 1468–1473.
  • Djozan, D.; Baheri, T.; Karimian, G.; Shahidi, M. Forensic Discrimination of Blue Ballpoint Pen Inks based on Thin Layer Chromatography and Image Analysis. Forensic Sci. Int. 2008, 179, 199–205.
  • Soponar, F.; Moţ, A. C.; Sârbu, C. Quantitative Determination of Some Food Dyes Using Digital Processing of Images Obtained by Thin-Layer Chromatography. J. Chromatogr. A 2008, 1188, 295–300.
  • Rodić, Z.; Simonovska, B.; Albreht, A.; Vovk, I. Determination of Lutein by High-Performance Thin-Layer Chromatography Using Densitometry and Screening of Major Dietary Carotenoids in Food Supplements. J. Chromatogr. A 2012, 1231, 59–65.
  • de Andrade, F. I.; Guedes, M. I. F.; Vieira, Í. G. P.; Mendes, F. N. P.; Rodrigues, P. A. S.; Maia, C. S. C.; Ávila, M. M. M.; Ribeiro, L. M. Determination of Synthetic Food Dyes in Commercial Soft Drinks by TLC and Ion-Pair HPLC. Food Chem. 2014, 157, 193–198.
  • Komissarchik, S.; Nyanikova, G. Test Systems and a Method for Express Detection of Synthetic Food Dyes in Drinks. LWT—Food Sci Technol 2014, 58, 315–320.
  • Lee, L. C.; Hakim, M. A.; Ishak, A. A. The Analysis of Dyes in Black Ballpoint Pen Inks using High Performance Thin Layer Chromatography. Malaysian J. Forensic Sci. 2014, 5(2), 22–26.
  • Lee, L. C.; Nunurung, S. M.; Ishak, A. A. Forensic Analysis of Blue Ballpoint Pen Inks on Questioned Documents by High Performance Thin Layer Chromatography Technique (HPTLC). Malaysian J. Anal. Sci. 2014, 18, 226–233.
  • Tatebe, C.; Zhong, X.; Ohtsuki, T.; Kubota, H.; Sato, K.; Akiyama, H. 2014. A simple and rapid chromatographic method to determine unauthorized basic colorants (rhodamine B, auramine O, and pararosaniline) in processed foods. Food Science Nutrition 2(5):547–556.
  • Taha, M. N.; Krawinkel, M. B.; Morlock, G. E. High-Performance Thin-Layer Chromatography Linked with (Bio)assays and Mass Spectrometry—A Suited Method for Discovery and Quantification of Bioactive Components? Exemplarily Shown for Turmeric and Milk Thistle Extracts. J. Chromatogr. A 2015, 1394, 137–147.
  • Zahra, N.; Alim-un-Nisa, Fatima, Z.; Kalim, I.; Saeed, K. Identification of Synthetic Food Dyes in Beverages by Thin Layer Chromatography. Pak. J. Food Sci. 2015, 25(4), 178–181.
  • Barker, J.; Ramotowski, R.; Nwokoye, J. The Effect of Solvent Grade on Thin Layer Chromatographic Analysis of Writing Inks. Forensic Sci. Int. 2016, 266, 139–147.
  • García-Falcón, M. S.; Simal-Gándara, J. Determination of Food Dyes in Soft Drinks Containing Natural Pigments by Liquid Chromatography with Minimal Clean-up. Food Control 2005, 16, 293–297.
  • Minioti, K. S.; Sakellariou, C. F.; Thomaidis N. S. Determination of 13 Synthetic Food Colorants in Water-Soluble Foods by Reversed-Phase High-Performance Liquid Chromatography Coupled with Diode-Array Detector. Anal. Chim. Acta 2007, 583, 103–110.
  • Alves, S. P.; Brum, D. M.; de Andrade, E. C. B.; Netto, A. D. P. Determination of Synthetic Dyes in Selected Foodstuffs by High Performance Liquid Chromatography with UV-DAD Detection. Food Chem. 2008, 107, 489–496.
  • Yoshioka, N.; Ichihashi, K. Determination of 40 Synthetic Food Colors in Drinks and Candies by High-Performance Liquid Chromatography Using a Short Column with Photodiode Array Detection. Talanta 2008, 74, 1408–1413.
  • Qiao, F.; Geng, Y.; He, C.; Wu, Y.; Pan, P. Molecularly Imprinted Microspheres as SPE Sorbent for Selective Extraction of Four Sudan Dyes in Catsup Products. J. Chromatogr. B 2011, 879, 2891–2896.
  • Yan, H.; Wang, H.; Qiao, J.; Yang, G. Molecularly Imprinted Matrix Solid-Phase Dispersion Combined with Dispersive Liquid–Liquid Microextraction for the Determination of Four Sudan Dyes in Egg Yolk. J. Chromatogr. A 2011, 1218, 2182–2188.
  • Bonan, S.; Fedrizzi, G.; Menotta, S.; Elisabetta, C. Simultaneous Determination of Synthetic Dyes in Foodstuffs and Beverages by High-Performance Liquid Chromatography Coupled with Diode-Array Detector. Dyes Pigments 2013, 99, 36–40.
  • Li, J.; Ding, X.-M.; Liu, D.-D.; Guo, F.; Chen, Y.; Zhang, Y.-B.; Liu, H.-M. Simultaneous Determination of Eight Illegal Dyes in Chili Products by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2013, 942–943, 46–52.
  • Zou, T.; He, P.; Yasen, A.; Li, Z. Determination of Seven Synthetic Dyes in Animal Feeds and Meat by High Performance Liquid Chromatography with Diode Array and Tandem Mass Detectors. Food Chem. 2013, 138, 1742–1748.
  • Chen, D.; Zhao, Y.; Miao, H.; Wu, Y. A Novel Cation Exchange Polymer as a Reversed-Dispersive Solid Phase Extraction Sorbent for the Rapid Determination of Rhodamine B Residue in Chili Powder and Chili Oil. J. Chromatogr. A 2014, 1374, 268–272.
  • Jia, W.; Chu, X.; Ling, Y.; Huang, J.; Lin, Y.; Chang, J. Simultaneous Determination of Dyes in Wines by HPLC Coupled to Quadrupole Orbitrap Mass Spectrometry. J. Sep. Sci. 2014, 37, 782–791.
  • Tavakoli, M.; Shemirani, F.; Hajimahmoodi, M. Magnetic Mixed Hemimicelles Solid-Phase Extraction of Three Food Colorants from Real Samples. Food Anal. Methods 2014, 7, 100–108.
  • Zhu, Y.; Zhao, B.; Xiao, R.; Yun, W.; Xiao, Z.; Tu, D.; Chen, S. Simultaneous Determination of 14 Oil-Soluble Synthetic Dyes in Chilli Products by High Performance Liquid Chromatography with a Gel Permeation Chromatography Clean-Up Procedure. Food Chem. 2014, 145, 956–962.
  • Bazregar, M.; Rajabi, M.; Yamini, Y.; Asghari, A.; Abdossalami asl, Y. In-Tube Electro-Membrane Extraction with a Sub-Microliter Organic Solvent Consumption as an Efficient Technique for Synthetic Food Dyes Determination in Foodstuff Samples. J. Chromatogr. A 2015, 1410, 35–43.
  • Li, X. Q.; Zhang, Q. H.; Ma, K.; Li, H. M.; Guo, Z. Identification and Determination of 34 Water-Soluble Synthetic Dyes in Foodstuff by High Performance Liquid Chromatography-Diode Array Detection–Ion Trap Time-of-flight Tandem Mass Spectrometry. Food Chem. 2015, 182, 316–326.
  • Rajabi, M.; Sabzalian, S.; Barfi, B.; Arghavani-Beydokhti, S.; Asghari, A. In-Line Micro-Matrix Solid-Phase Dispersion Extraction for Simultaneous Separation and Extraction of Sudan Dyes in Different Spices. J. Chromatogr. A 2015, 1425, 42–50.
  • Song, Y.; Wu, L.; Li, N.; Hu, M.; Wang, Z. Utilization of a Novel Microwave-Assisted Homogeneous Ionic Liquid Microextraction Method for the Determination of Sudan Dyes in Red Wines. Talanta 2015, 135, 163–169.
  • Tsai, C.-F.; Kuo, C.-H.; Shih, D. Y.-C. Determination of 20 Synthetic Dyes in Chili Powders and Syrup-Preserved Fruits by Liquid Chromatography/Tandem Mass Spectrometry. J. Food Drug Anal. 2015, 23, 453–462.
  • Zhang, C.; Li, G.; Zhang, Z. A Hydrazone Covalent Organic Polymer based Micro-Solid Phase Extraction for Online Analysis of Trace Sudan Dyes in Food Samples. J. Chromatogr. A 2015, 1419, 1–9.
  • Chai, W.; Wang, H.; Zhang, Y.; Ding, G. Preparation of Polydopamine-Coated Magnetic Nanoparticles for Dispersive Solid-Phase Extraction of Water-Soluble Synthetic Colorants in Beverage Samples with HPLC Analysis. Talanta 2016, 149, 13–20.
  • Martin, F.; Oberson, J.-M.; Meschiari, M.; Munari C. Determination of 18 Water-Soluble Artificial Dyes by LC–MS in Selected Matrices. Food Chem. 2016, 197, 1249–1255.
  • Qi, P.; Liang, Z.; Wang, Y.; Xiao, J.; Liu, J.; Zhou, Q.; Zheng, C.; Luo, L.; Lin, Z.; Zhu, F.; Zhang, X. Mixed Hemimicelles Solid-Phase Extraction based on Sodium Dodecyl Sulfate-Coated Nano-Magnets for Selective Adsorption and Enrichment of Illegal Cationic Dyes in Food Matrices Prior to High-Performance Liquid Chromatography-Diode Array Detection. J. Chromatogr. A 2016, 1437, 25–36.
  • Sun, Q.; Luo, Y.; Yang, X.; Xiang, P.; Shen, M. Detection and Identification of Dyes in Blue Writing Inks by LC-DAD-Orbitrap MS. Forensic Sci. Int. 2016, 261, 71–81.
  • Huang, H.-Y.; Chiu, C.-W.; Sue, S.-L.; Cheng, C.-F. Analysis of Food Colorants by Capillary Electrophoresis with Large-Volume Sample Stacking. J. Chromatogr. A 2003, 995, 29–36.
  • Fakhari, A. R.; Breadmore, M. C.; Macka, M.; Haddad, P. R. Non-Aqueous Capillary Electrophoresis with Red Light Emitting Diode Absorbance Detection for the Analysis of Basic Dyes. Anal. Chim. Acta 2006, 580, 188–193.
  • Ryvolová, M.; Táborský, P.; Vrábel, P.; Krásenský, P.; Preisler, J. Sensitive Determination of Erythrosine and Other Red Food Colorants Using Capillary Electrophoresis with Laser-Induced fluorescence Detection. J. Chromatogr. A 2007, 1141, 206–211.
  • Tsai, C.-H.; Lin, J.-D.; Lin C.-H. Optimization of the Separation of Malachite Green in Water by Capillary Electrophoresis Raman Spectroscopy (CE-RS) based on the Stacking and Sweeping Modes. Talanta 2007, 72, 368–372.
  • Surowiec, I.; Pawelec, K.; Rezeli, M.; Kilar, F.; Trojanowicz, M. Capillary Electrophoretic Determination of Main Components of Natural Dyes with MS Detection. J. Sep. Sci. 2008, 31, 2457–2462.
  • López-Montes, A.; Blanc, R.; Espejo, T.; Navalón, A.; Vílchez, J. L. Characterization of Sepia Ink in Ancient Graphic Documents by Capillary Electrophoresis. Microchem. J. 2009, 93, 121–126.
  • Szafarska, M.; Wietecha-Posłuszny, R.; Woźniakiewicza, M.; Kościelniak, P. Application of Capillary Electrophoresis to Examination of Color Inkjet Printing Inks for Forensic Purposes. Forensic Sci. Int. 2011, 212, 78–85.
  • López-Montes, A. M.; Dupont, A.-L.; Desmazières, B.; Lavédrine, B. Identification of Synthetic Dyes in Early Colour Photographs Using Capillary Electrophoresis and Electrospray Ionisation-Mass Spectrometry. Talanta 2013, 114, 217–226.
  • Komissarchik, S.; Nyanikova, G. Test Systems and a Method for Express Detection of Synthetic Food Dyes in Drinks. LWT—Food Sci. Technol. 2014, 58, 315–320.
  • Kula, A.; Król, M.; Wietecha-Posłuszny, R.; Woźniakiewicz, M.; Kościelniak, P. Application of CE-MS to Examination of Black Inkjet Printing Inks for Forensic Purposes. Talanta 2014, 128, 92–101.
  • Mark, J. J. P.; Piccinelli, P.; Matysik, F. M. Very Fast Capillary Electrophoresis with Electrochemical Detection for High-Throughput Analysis Using Short, Vertically Aligned Capillaries. Anal. Bioanal. Chem. 2014, 406, 6069–6073.
  • Calcerrada, M.; González-Herráez, M.; Garcia-Ruiz, C. A Microdestructive Capillary Electrophoresis Method for the Analysis of Blue-Pen-Ink Strokes on Office Paper. J. Chromatogr. A 2015, 1400, 140–148.
  • Li, X.; Li, P. C. H. Microfluidic Selection and Retention of a Single Cardiac Myocyte, On-Chip Dye Loading, Cell Contraction by Chemical Stimulation, and Quantitative Fluorescent Analysis of Intracellular Calcium. Anal. Chem. 2005, 77, 4315–4322.
  • Chen, H.; Li, X. J.; Wang, L.; Li, P. C. H. A Rotating Microfluidic Array Chip for Staining Assays. Talanta 2010, 81, 1203–1208.
  • Nuchtavorn, N.; Smejkal, P.; Breadmore, M. C.; Guijt, R. M.; Doble, P.; Bek, F.; Foret, F.; Suntornsuk, L.; Macka, M. Exploring Chip-Capillary Electrophoresis-Laser-Induced fluorescence field-Deployable Platform flexibility: Separations of fluorescent Dyes by Chip-based Non-Aqueous Capillary Electrophoresis. J. Chromatogr. A 2013, 1286, 216–221.
  • Fan, X.; Jia, C.; Yang, J.; Li, G.; Mao, H.; Qinghui Jin, Q.; Zhao, J. A Microfluidic Chip Integrated with a High-Density PDMS-based Microfiltration Membrane for Rapid Isolation and Detection of Circulating Tumor Cells. Biosensors Bioelectron. 2015, 71, 380–386.
  • Hyun, K.-A.; Lee, T. Y.; Lee, S. H.; Jung, H.-I. Two-Stage Microfluidic Chip for Selective Isolation of Circulating Tumor Cells (CTCs). Biosensors Bioelectron. 2015, 67, 86–92.
  • Tachibana, H.; Saito, M.; Shibuya, S.; Tsuji, K.; Miyagawa, N.; Yamanaka, K.; Tamiya, E. On-Chip Quantitative Detection of Pathogen Genes by Autonomous Microfluidic PCR Platform. Biosensors Bioelectron. 2015, 74, 725–730.
  • Zhang, X.; Wu, X.; Peng, R.; Li, D. Electromagnetically Controlled Microfluidic Chip for DNA Extraction. Measurement 2015, 75, 23–28.
  • Germain, T.; Ansari, M.; Pappas, D. Observation of Reversible, Rapid Changes in Drug Susceptibility of Hypoxic Tumor Cells in a Microfluidic Device. Anal. Chim. Acta 2016, 936, 179–184.
  • Kim, H.; Rao, B. A.; Jeong, J.; Angupillai, S.; Choi, J. S.; Nam, J.-O.; Lee, C.-S.; Son, Y.-A. A Rhodamine Scaffold Immobilized onto Mesoporous Silica as a fluorescent Probe for the Detection of Fe (III) and Applications in Bio-Imaging and Microfluidic Chips. Sensors Actuators B: Chem. 2016, 224, 404–412.
  • Ueland, M.; Blanes, L.; Taudte, R. V.; Stuart, B. H.; Cole, N.; Willis, P.; Roux, C.; Doble, P. Capillary-Driven Microfluidic Paper-based Analytical Devices for Lab on a Chip Screening of Explosive Residues in Soil. J. Chromatogr. A 2016, 1436, 28–33.
  • Wu, R.; Seah, Y. P.; Wang, Z. Microfluidic Chip for Stacking, Separation and Extraction of Multiple DNA Fragments. J. Chromatogr. A 2016, 1437, 219–225.
  • Soylak, M.; Unsal, Y. E.; Tuzen, M. Spectrophotometric Determination of Trace Levels of Allura Red in Water Samples After Separation and Preconcentration. Food Chem. Toxicol. 2011, 49, 1183–1187.
  • Soylak, M.; Unsal, Y. E.; Yilmaz, E.; Tuzen M. Determination of Rhodamine B in Soft Drink, Waste Water and Lipstick Samples After Solid Phase Extraction. Food Chem. Toxicol. 2011, 49, 1796–1799.
  • Unsal, Y. E.; Soylak, M.; Tuzen M. Column Solid-Phase Extraction of Sunset Yellow and Spectrophotometric Determination of Its Use in Powdered Beverage and Confectionery Products. Int. J. Food Sci. Technol. 2012, 47, 1253–1258.
  • Liang, W.; Chen, Y.; Zheng, F.; Li, S.-X. Titanium Dioxide Nanoparticle based Solid Phase Extraction of Trace Alizarin Violet, followed by Its Specrophotometric Determination. Microchim. Acta 2014, 181, 1513–1519.
  • Bişgin, A. T.; Narin, İ.; Uçan, M. Determination of Sunset Yellow (E110) in Foodstuffs and Pharmaceuticals After Separation and Preconcentration Via Solid-Phase Extraction Method. Int. J. Food Sci. Technol. 2015, 50, 919–925.
  • Bişgin, A. T.; Uçan, M.; Narin, İ.; Soylak, M. A Comparative Study for Separation, Preconcentration and Determination of Tartrazine (E 102) in Soft Drink Samples by Two Kinds of Amberlite Resins. Food Anal. Methods 2015, 8, 2141–2149.
  • Bişgin, A. T.; Sürme, Y.; Uçan, M.; Narin, İ. Simultaneous Spectrophotometric Determination and Column Solid-Phase Extraction of Two Lanaset Textile Dyes in Environmental Water Samples. J. Ind. Eng. Chem. 2016, 38, 186–192.
  • Heidarizadi, E.; Tabaraki, R. Simultaneous Spectrophotometric Determination of Synthetic Dyes in Food Samples After Cloud Point Extraction Using Multiple Response Optimizations. Talanta 2016, 148, 237–246.
  • Zarzycki, P. K. Simple Horizontal Chamber for Thermostated Micro-Thin-Layer Chromatography. J. Chromatogr. A 2008, 1187, 250–259.
  • Zargar, B.; Parham, H.; Hatamie A. Fast Removal and Recovery of Amaranth by Modified Iron Oxide Magnetic Nanoparticles. Chemosphere 2009, 76, 554–557.
  • Mazaheri, H.; Ghaedi, M.; Asfaram, A.; Hajati, S. Performance of CuS Nanoparticle Loaded on Activated Carbon in the Adsorption of Methylene Blue and Bromophenol Blue Dyes in Binary Aqueous Solutions: Using Ultrasound Power and Optimization by Central Composite Design. J. Mol. Liquids 2016, 219, 667–676.
  • Ghaedi, M.; Taghavimoghadam, N.; Naderi, S.; Sahraei, R.; Daneshfar, A. Comparison of Removal of Bromothymol Blue from Aqueous Solution by Multiwalled Carbon Nanotube and Zn (OH) 2 Nanoparticles Loaded on Activated Carbon: A Thermodynamic Study. J. Ind. Eng. Chem. 2013, 19, 1493–1500.
  • Pradhan, P.; Mascarenhas R. J.; Thomas, T.; Namboothiri, I. N. N.; D’Souza, O. J.; Mekhalif, Z. Electropolymerization of Bromothymol Blue on Carbon Paste Electrode Bulk Modified with Oxidized Multiwall Carbon Nanotubes and Its Application in Amperometric Sensing of Epinephrine in Pharmaceutical and Biological Samples. J. Electroanal. Chem. 2014, 732, 30–37.
  • Barthelmes, L.; Goyal, A.; Newcombe, R. G.; McNeill, F.; Mansel, R. E. Adverse Reactions to Patent Blue V Dye e The NEW START and ALMANAC Experience. Eur. J. Surg. Oncol. 2010, 36, 399–403.
  • Barthelmes, L.; Goyal, A.; Sudheer, P.; Mansel, R. E. Investigation of Anaphylactic Reaction After Patent Blue V Dye Injection. Breast 2010, 19, 516–520.
  • Soliman, Y. S.; Beshir, W. B.; Abdel-Fattah, A. A.; Fahim R. A.; El-Anadouli, B. E. Radiation-Induced Coloration of Xylenol Blue/film Containing Hexachloroethane for Food Irradiation Applications. J. Radioanal. Nucl. Chem. 2016, 310, 117–124.
  • Macioszek, V. K.; Kononowicz, A. K. The Evaluation of the Genotoxicity of Two Commonly Used Food Colors: Quinoline Yellow (E 104) and Brilliant Black BN (E 151). Cell. Mol. Biol. Lett. 2004, 9, 107–122.
  • Rouf, S.; Nagapadma, M. Chitosan and Surfactant Impregnated Chitosan Beads for Removal of Textile Dye Brilliant Black BN from Aqueous Solution. Int. J. Sci. Eng. Res. 2015, 6(1), 1268–1275.
  • Nayak, D. S.; Shetti, N. P. A Novel Sensor for a Food Dye Erythrosine at Glucose Modified Electrode. Sensors Actuators B 2016, 230, 140–148.
  • Negm, N. A.; Abou Kana, M. T. H.; Abd-Elaal, A. A.; Elwahy, A. H. M. Fluorescein Dye Derivatives and Their Nanohybrids: Synthesis, Characterization and Antimicrobial Activity. J. Photochem. Photobiol. B: Biol. 2016, 162, 421–433.
  • Islam, M. S.; Park, S.; Song, C.; Kadi, A. A.; Kwon, Y.; Rahman, A. F. M. M. Fluorescein Hydrazones: A Series of Novel Non-Intercalative Topoisomerase IIa Catalytic Inhibitors Induce G1 Arrest and Apoptosis in Breast and Colon Cancer Cells. Eur. J. Med. Chem. 2017, 125, 49–67.
  • Mageste, A. B.; de Lemos, L. R.; Ferreira, G. M. D.; da Silva, M. C. H.; da Silva, L. H. M. Bonomo, R. C. F.; Minim, L. A. Aqueous Two-Phase Systems: An efficient, Environmentally Safe and Economically Viable Method for Purification of Natural Dye Carmine. J. Chromatogr. A 2009, 1216, 7623–7629.
  • Arslan, Z. K.; Aycan, Ş. An Example of the Use of Spectrophotometric Method: Determining the Carmine in Various Food Products. Proc.—Soc. Behav. Sci. 2014, 116, 4622–4625.
  • Lim, H.-S.; Choi, J.-C.; Song, S.-B.; Kim, M. Quantitative Determination of Carmine in Foods by High-Performance Liquid Chromatography. Food Chem. 2014, 158, 521–526.
  • bin Hussein, M. Z.; Zainal, Z.; Yahaya, A. H.; binti Abd. Aziz, A. Synthesis of Layered Organic–Inorganic Nanohybrid Material: An Organic Dye, Naphthol Blue Black in Magnesium–Aluminum Layered Double Hydroxide Inorganic Lamella. Mater. Sci. Eng. B 2002, 88, 98–102.
  • Ferkous, H.; Merouani, S.; Hamdaoui, O.; Pétrier, C. Persulfate-Enhanced Sonochemical Degradation of Naphthol Blue Black in Water: Evidence of Sulfate Radical Formation. Ultrason. Sonochem. 2017, 34, 580–587.
  • Ibrahim, E. A.-S.; Moustafa, M. A.-M.; Monis, W. Comparison between Phenol Red Chromo-Endoscopy and a Stool Rapid Immunoassay for the Diagnosis of Helicobacter Pylori in Patients with Gastritis. J. Microsc. Ultrastruct. 2015, 3, 175–180.
  • Shokrollahi, A.; Zare, E. Determination of Acidity Constants of Bromophenol Blue and Phenol Red Indicators by Solution Scanometric Method and Comparison with Spectrophotometric Results. J. Mol. Liquids 2016, 219, 1165–1171.
  • Ali, A. S. A.; Sindhu, V.; Srinivasan, A. G. Third Order Nonlinear Optical Studies of Bromocresol Purple in Liquid and Solid Media. Optik 2013, 124, 4836–4840.
  • Koçak, S.; Aslışen, B. Hydrazine Oxidation at Gold Nanoparticles and Poly (Bromocresol Purple) Carbon Nanotube Modified Glassy Carbon Electrode. Sensors Actuators B: Chem. 2014, 196, 610–618.
  • Nezamzadeh-Ejhieh, A.; Moazzeni, N. Sunlight Photodecolorization of a Mixture of Methyl Orange and Bromocresol Green by CuS Incorporated in a Clinoptilolite Zeolite as a Heterogeneous Catalyst. J. Ind. Eng. Chem. 2013, 19, 1433–1442.
  • Fan, J.; Shen, X.; Wang, J. Spectrophotometric Determination of the Dissociation Constants of Methyl Yellow in Mixed Protic Solvents. Talanta 1999, 49, 843–850.
  • Mishra, V.; Mishra, M.; Chaudhari, B. P.; Khanna, R.; Das, M. Argemone Oil and Butter Yellow Induced Toxicity in Hepatic and Extra Hepatic Tissues. Bioenergetics 2014, 3, 1–7.
  • Sahoo, C.; Gupta, A. K.; Pal, A. Photocatalytic Degradation of Methyl Red Dye in Aqueous Solutions Under UV Irradiation Using Ag+ Doped TiO2. Desalination 2005, 181, 91–100.
  • Dadfarnia, S.; Haji Shabani, A. M.; Moradi, S. E.; Emami, S. Methyl Red Removal from Water by Iron based Metal-Organic Frameworks Loaded onto Iron Oxide Nanoparticle Adsorbent. Appl. Surf. Sci. 2015, 330, 85–93.
  • Zarzycki, P. K.; Zarzycka, M. B.; Głód, B. K. Estimation of Micro-TLC Plate Peak Capacity for One and Two Dimensional Multiple Sample Separation. Measure. Autom. Monit. 2009, 55, 276–279.
  • Zarzycki, P. K.; Zarzycka, M. B. Application of Temperature-Controlled Micro Planar Chromatography for Separation and Quantification of Testosterone and Its Derivatives. Anal. Bioanal. Chem. 2008, 391, 2219–2225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.