629
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of parkinson's disease

ORCID Icon

References

  • Mustafa, G.; Ahmad, N.; Baboota, S.; Ali, J.; Ahuja, A. UHPLC/ESI-Q-TOF-MS Method for the Measurement of Dopamine in Rodent Striatal Tissue: A Comparative Effects of Intranasal Administration of Ropinirole Solution Over Nanoemulsion. Drug Test. Anal. 2013, 5, 702–709.
  • Taylor, J. P.; Hardy, J.; Fischbeck, K. H. Toxic Proteins in Neurodegenerative Disease. Science 2002, 296, 1991–1995.
  • Schapira, A. H. V. Present and Future Drug Treatment for Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatr. 2005, 76, 1472–1478.
  • Wen, Z.; Yan, Z.; Hu, K.; Pang, Z.; Cheng, X.; Guo, L.; Zhang, Q.; Jiang, X.; Fang, L.; Lai, R. Odorranalectin-Conjugated Nanoparticles: Preparation, Brain Delivery and Pharmacodynamic Study on Parkinson’s Disease Following Intranasal Administration. J. Control Release 2011, 151, 131–138.
  • Chen, J. J.; Swope, D. M.; Dashtipour, K. Comprehensive Review of Rasagiline, a Second-Generation Monoamine Oxidase Inhibitor, for the Treatment of Parkinson’s Disease. Clin. Ther. 2007, 29, 1825–1849.
  • Azilect, T. AZILECT; Product Monograph, Control No: 13427; Teva Pharmaceutical Industries Ltd: Petah Tikva, Israel, 2010.
  • Mittal, D.; Md, S.; Hasan, Q.; Fazil, M.; Ali, A.; Baboota, S.; Ali, J. Brain Targeted Nanoparticulate Drug Delivery System of Rasagiline via Intranasal Route. Drug Deliv. 2016, 23, 130–139.
  • Guay, D. R. Rasagiline (TVP-1012): A New Selective Monoamine Oxidase Inhibitor for Parkinson’s Disease. Am. J. Geriatr. Pharmacother. 2006, 4, 330–346.
  • Gururangan, S.; Friedman, H. S. Innovations in Design and Delivery of Chemotherapy for Brain Tumors. Neuroimaging Clin. North Am. 2009, 12, 583–597.
  • de Lange, E. C. The Mastermind Approach to Central Nervous System Drug Therapy: Translational Prediction of Human Brain Distribution, Target Site Kinetics, and Therapeutic Effects. Fluids Barriers CNS 2013, 10, 12.
  • Bukka, R.; Prakasam, K.; Patel, C. D. Preparation and Evaluation of Intraoral Drug Delivery System for Rasagiline Mesylate. Int. J. Pharm. Sci. Drug Res. 2010, 2, 294–301.
  • Deng, J.; Lin, J.; Xiao, J. Transdermal Patch Containing Rasagiline for Treatment or Prophylaxis of Nervous System Disease and Its Preparation Process. WIPO Patent WO2007101400 A1, 2007.
  • Lin, J.; Li, Q.; Li, H.; Zhang, T.; Deng, J.; Fan, J. A Stable and Release-Controlled Rasagiline Transdermal Patch and Method of Preparation Thereof. WIPO Patent WO2009152777 A1, 2009.
  • Dhuria, S. V.; Hanson, L. R.; Frey, W. H. Intranasal Delivery to the Central Nervous System: Mechanism and Experimental Consideration. J. Pharm. Sci. 2010, 99, 1654–1673.
  • Pires, A.; Fortuna, A.; Alves, G.; Falcao, A. Intranasal Drug Delivery: How, Why and What For. J. Pharm. Sci. 2009, 12, 288–311.
  • Mittal, D.; Ali, A.; Md, S.; Baboota, S.; Sahni, J. K.; Ali, J. Insights in to Direct Nose to Brain Delivery: Current Status and Future Perspective. Drug Deliv. 2013, 21, 75–86.
  • Davis, S. S. Biomedical Applications of Nanotechnology – Implications for Drug Targeting and Gene Therapy. Trends Biotechnol. 1997, 15, 217–224.
  • Illum, L. Transport of Drugs from the Nasal Cavity to Central Nervous System. Eur. J. Pharm. Sci. 2000, 11, 1–18.
  • Ugwoke, M. I.; Agu, R. U.; Vanbilloen, H.; Baetens, J.; Augustijns, P.; Verbeke, N.; Mortelmans, L.; Verbruggen, A.; Kinget, R.; Bormans, G. Scintigraphic Evaluation in Rabbits of Nasal Drug Delivery Systems Based on Carbopol 971P® and Carboxymethylcellulose. J. Control Release 2000, 68, 207–214.
  • Ugwoke, M. I.; Verbeke, N.; Kinget, R. The Biopharmaceutical Aspects of Nasal Mucoadhesive Drug Delivery. J. Pharm. Pharmacol. 2001, 53, 3–21.
  • Fernandez-Urrusuno, R.; Romani, D.; Calvo, D. Development of a Freeze Dried Formulation of Insulin-Loaded Chitosan Nanoparticles Intended for Nasal Administration. STP Pharm. Sci. 1999, 9, 429–436.
  • Md, S.; Khan, R. A.; Chuttani, K.; Baboota, S.; Sahni, J. K.; Ali, J. Bromocriptine Loaded Chitosan Nanoparticles Intended for Direct Nose to Brain Delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy Study in Mice Model. Eur. J. Pharm. Sci. 2013, 48, 393–405.
  • Bonaccorso, A.; Musumeci, T.; Carbone, C.; Vicari, L.; Lauro, M. R.; Puglisi, G. Revisiting the Role of Sucrose in PLGA-PEG Nanocarrier for Potential Intranasal Delivery. Pharm. Dev. Technol. 2017, 27, 1–34.
  • Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal Delivery of Rotigotine to the Brain with Lactoferrin-Modified PEG-PLGA Nanoparticles for Parkinson’s Disease Treatment. Int. J. Nanomed. 2016, 11, 6547–6559.
  • Warsi, M. H.; Anwar, M.; Garg, V.; Jain, G. K.; Talegaonkar, S.; Ahmad, F. J.; Khar, R. K. Dorzolamide-Loaded PLGA/Vitamin E TPGS Nanoparticles for Glaucoma Therapy: Pharmacoscintigraphy Study and Evaluation of Extended Ocular Hypotensive Effect in Rabbits. Colloids Surf. B Biointerfaces 2014, 122, 423–431.
  • Zhou, L.; He, H.; Li, M. C.; Song, K.; Cheng, H. N.; Wu, Q. Morphological Influence of Cellulose Nanoparticles (CNs) from Cottonseed Hulls on Rheological Properties of polyvinyl Alcohol/CN Suspensions. Carbohydr. Polym. 2016, 153, 445–454.
  • Liang, Q.; Wang, Y. X.; Ding, J. S.; He, W.; Deng, L. L.; Li, N.; Liao, Y. J.; Li, Z.; Ye, B.; Wang, W. Intra-Arterial Delivery of Superparamagnetic Iron-Oxide Nanoshell and Polyvinyl Alcohol Based Chemoembolization System for the Treatment of Liver Tumor. Discov. Med. 2017, 23, 27–39.
  • Chang, S. F.; Huang, K. C.; Cheng, C. C.; Su, Y. P.; Lee, K. C.; Chen, C. N.; Chang, H. I. Glucose Adsorption to Chitosan Membranes Increases Proliferation of Human Chondrocyte via Mammalian Target of Rapamycin Complex 1 and Sterol Regulatory Element-Binding Protein-1 Signaling. J. Cell Physiol. 2017, 232, 2741–2749. doi:10.1002/jcp.25869.
  • He, R.; Yin, C. Trimethyl Chitosan Based Conjugates for Oral and Intravenous Delivery of Paclitaxel. Acta Biomaterialia 2017, 53, 355–366.
  • Chassary, P.; Vincent, T.; Guibal, E. Metal Anion Sorption on Chitosan and Derivative Materials: A Strategy for Polymer Modification and Optimum Use. React. Funct. Polym. 2004, 60, 137–149.
  • Ahmad, N.; Ahmad, R.; Naqvi, A. A.; Alam, M. A.; Ashafaq, M.; Samim, M.; Iqbal, Z.; Ahmad, F. J. Rutin-Encapsulated Chitosan Nanoparticles Targeted to the Brain in the Treatment of Cerebral Ischemia. Int. J. Biol. Macromol. 2016, 91, 640–655.
  • Badran, M. M.; Mady, M. M.; Ghannam, M. M.; Shakeel, F. Preparation and Characterization of Polymeric Nanoparticles Surface Modified with Chitosan for Target Treatment of Colorectal Cancer. Int. J. Biol. Macromol. 2017, 95, 643–649.
  • Mokale, V. J.; Naik, J. B.; Verma, U.; Patil, J. S.; Yadava, S. K. Preparation and Characterization of Biodegradable Glimepiride Loaded PLA Nanoparticles by o/w Solvent Evaporation Method Using High Pressure Homogenizer: A Factorial Design Approach. SAJ Pharm. Pharmacol. 2014, 1, 1–10.
  • Ignjatovic, N.; Wu, V.; Adjukovic, Z.; Mihajiilov-Krstev, T.; Uskokovic, V.; Uskokovic, D. Chitosan-PLGA Polymer Blends as Coatings for Hydroxyapatite Nanoparticles and Their Effect on Antimicrobial Properties, Osteoconductivity and Regeneration of Osseous Tissues. Mater. Sci. Eng. C 2016, 60, 357–364.
  • Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F. J. PNIPAM Nanoparticles for Targeted and Enhanced Nose-to-Brain Delivery of Curcuminoids: UPLC/ESI-Q-ToF-MS/MS-Based Pharmacokinetics and Pharmacodynamic Evaluation in Cerebral Ischemia Model. Drug Deliv. 2016, 23, 2095–2114.
  • Ge, H.; Hu, Y.; Jiang, X.; Cheng, D.; Yuan, Y.; Bi, H.; Yang, C. Preparation, Characterization, and Drug Release Behaviors of Drug Nimodipine-Loaded Poly(Epsilon-Caprolactone)-Poly(Ethylene Oxide)-Poly(Epsilon-Caprolactone) Amphiphilic Triblock Copolymer Micelles. J. Pharm. Sci. 2002, 91, 1463–1473.
  • US Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation.Guidances/ucm070107. 2011; pdf (accessed Apr 15, 2014).
  • Ahmad, N.; Warsi, M. H.; Iqbal, Z.; Samim, M.; Ahmad, F. J. Quantification of Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin in Rodent Brain by UHPLC/ESI-Q-TOF-MS/MS After Intra-Nasal Administration of Curcuminoids Loaded PNIPAM Nanoparticles. Drug Test. Anal. 2014, 6, 257–267.
  • Babbar, A. K.; Singh, A. K.; Goel, H. C.; Chauhan, U. P.; Sharma, R. K. Evaluation of (99 m)Tc-Labeled Photosan-3, a Hematoporphyrin Derivative, as a Potential Radiopharmaceutical for Tumor Scintigraphy. Nucl. Med. Biol. 2000, 27, 419–426.
  • Mainardes, R. M.; Evangelista, R. C. PLGA Nanoparticles Containing Praziquantel: Effect of Formulation Variables on Size Distribution. Int. J. Pharm. 2005, 290, 137–144.
  • Quintanar-Guerrero, D.; Fessi, H.; Allemann, E.; Doelker, E. Influence of Stabilizing Agents and Preparatives Variables on the Formation of poly(d,l-Lactic Acid) Nanoparticles by an Emulsification-Diffusion Technique. Int. J. Pharm. 1996, 143, 133–141.
  • Kirby, B. P.; Pabari, R.; Chen, C. N.; Al Baharna, M.; Walsh, J.; Ramtoola, Z. Comparative Evaluation of the Degree of Pegylation of Poly(Lactic-co-Glycolic Acid) Nanoparticles in Enhancing Central Nervous System Delivery of Loperamide. J. Pharm. Pharmacol. 2013, 65, 1473–1481.
  • Sharma, D.; Maheshwari, D.; Philip, G.; Rana, R.; Bhatia, S.; Singh, M.; Gabrani, R.; Sharma, S. K.; Ali, J.; Sharma, R. K.; Dang, S. Formulation and Optimization of Polymeric Nanoparticles for Intranasal Delivery of Lorazepam Using Box-Behnken Design: In Vitro and In Vivo Evaluation. Biomed. Res. Int. 2014, 2014, 156010.
  • Mundargi, R. C.; Srirangarajan, S.; Agnihotri, S. A.; Patil, S. A.; Ravindra, S.; Setty, S. B.; Aminabhavi, T. M. Development and Evaluation of Novel Biodegradable Microspheres Based on Poly(d,l-Lactide-co-Glycolide) and Poly(Epsilon-Caprolactone) for Controlled Delivery of Doxycycline in the Treatment of Human Periodontal Pocket: In Vitro and In Vivo Studies. J. Control Release 2007, 119, 59–68.
  • Mittal, G.; Sahana, D. K.; Bhardwaj, V.; Kumar, M. N. Estradiol Loaded PLGA Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Copolymer Composition on Release Behavior In Vitro and In Vivo. J. Control Release 2007, 119, 77–85.
  • Ibrahim, M. M.; Abd-Elgawad, H. A.; Osama, A. S.; Monica, M. J. Nanoparticle-Based Topical Ophthalmic Formulations for Sustained Celecoxib Release. J. Pharm. Sci. 2013, 102, 1036–1053.
  • Wang, Y.; Li, P.; Kong, L. Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved Drug Delivery. AAPS PharmSciTech 2013, 14, 585–592.
  • Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Zhai, G. Curcumin-Loaded PLGA-PEG-PLGA Triblock Copolymeric Micelles: Preparation, Pharmacokinetics and Distribution In Vivo. J. Colloid Interface Sci. 2011, 354, 116–123.
  • Sanna, V.; Roggio, A. M.; Posadino, A. M. Novel Docetaxel-Loaded Nanoparticles Based on Poly(Lactide-co-Caprolactone) and Poly(Lactide-co-Glycolide-Cocaprolactone) for Prostate Cancer Treatment: Formulation, Characterization, and Cytotoxicity Studies. Nanoscale Res. Lett. 2011, 6, 260–270.
  • Zhang, W.; Li, Y.; Liu, L.; Sun, Q.; Shuai, X.; Zhu, W.; Chen, Y. Amphiphilic Toothbrush Like Copolymers Based on Poly(Ethylene Glycol) and Poly(Epsilon-Caprolactone) as Drug Carriers with Enhanced Properties. Biomacromolecules 2010, 1, 1331–1338.
  • Misra, R.; Acharya, S.; Dilnawaz, F.; Sahoo, S. K. Sustained Antibacterial Activity of Doxycycline-Loaded Poly(d,l-Lactide-co-Glycolide) and Poly(Epsilon-Caprolactone) Nanoparticles. Nanomedicine 2009, 4, 519–530.
  • Vllasaliu, D.; Exposito-Harris, R.; Heras, A.; Casettari, L.; Garnett, M.; Illum, L.; Stolnik, S. Tight Junction Modulation by Chitosan Nanoparticles: Comparison with Chitosan Solution. Int. J. Pharm. 2010, 400, 183–193.
  • Richter, T.; Keipert, S. In Vitro Permeation Studies Comparing Bovine Nasal Mucosa, Porcine Cornea and Artificial Membrane: Androstenedione in Microemulsions and Their Components. Eur. J. Pharm. Biopharm. 2004, 58, 137–143.
  • Ahmad, N.; Ahmad, R.; Alam, M. A.; Samim, M.; Iqbal, Z.; Ahmad, F. J. Quantification and Evaluation of Thymoquinone Loaded Mucoadhesive Nanoemulsion for Treatment of Cerebral Ischemia. Int. J. Biol. Macromol. 2016, 88, 320–332.
  • Meng, J.; Sturgis, T. F.; Youan, B. B. Engineering Tenofovir Loaded Chitosan Nanoparticles to Maximize Microbicide Mucoadhesion. Eur. J. Pharm. Sci. 2011, 44, 57–67.
  • Alam, S.; Khan, Z. I.; Mustafa, G.; Kumar, M.; Islam, F.; Bhatnagar, A.; Ahmad, F. J. Development and Evaluation of Thymoquinone-Encapsulated Chitosan Nanoparticles for Nose-to-Brain Targeting: A Pharmacoscintigraphic Study. Int. J. Nanomed. 2012, 7, 5705–5718.
  • Porporatto, C.; Bianco, I. D.; Correa, S. G. Local and Systemic Activity of the Polysaccharide Chitosan At Lymphoid Tissues After Oral Administration. J. Leukocyte Biol. 2005, 78, 62–69.
  • Ahmad, N.; Ahmad, R.; Naqvi, A. A.; Ashafaq, M.; Alam, M. A.; Ahmad, F. J.; Al-Ghamdi, M. S. The Effect of Safranal Loaded Mucoadhesive Nanoemulsion on Oxidative Stress Markers in Cerebral Ischemia. Artif. Cells Nanomed. Biotechnol. 2017, 45, 775–787.
  • International Conference on Harmonization (ICH). Validation of Analytical Procedures: Text and Methodology Q2 (R1). http://www.ich.org/cache/compo/363-272-1.htm-Q1A(R2) (accessed July 08, 2011), November 2005.
  • Ahmad, N.; Umar, S.; Ashafaq, M.; Akhtar, M.; Iqbal, Z.; Samim, M.; Ahmad, F. J. A Comparative Study of PNIPAM Nanoparticles of Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin and Their Effects on Oxidative Stress Markers in Experimental Stroke. Protoplasma 2013, 250, 1327–1338.
  • Ahmad, N.; Ahmad, R.; Naqvi, A. A.; Ashafaq, M.; Alam, M. A.; Iqbal, Z.; Ahmad, F. J. Isolation, Characterization, and Quantification of Curcuminoids and Their Comparative Effects in Cerebral Ischemia. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 133–146.
  • Ravi, P. R.; Aditya, N.; Patil, S.; Cherian, L. Nasal In-Situ Gels for Delivery of Rasagiline Mesylate: Improvement in Bioavailability and Brain Localization. Drug Deliv. 2015, 22, 903–910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.