1,184
Views
50
CrossRef citations to date
0
Altmetric
Review

Green chemistry: Analytical and chromatography

, , , &

References

  • Warner, J. C.; Cannon, A. S.; Dye, K. M. Green Chemistry. EIA Rev. 2004, 24, 775–799.
  • Badami, B. V. Concept of Green Chemistry. Resonance 2008, 13, 1041–1048.
  • Nameroff, T. J.; Garant, R. J.; Albert, M. B. Adoption of Green Chemistry: An Analysis Based on US Patents. Res. Policy 2004, 33, 959–974.
  • Kletz, T. A. What You Don’t have, Can’t Leak. Chem. Ind. 1978, 9124, 287–292.
  • Lancaster, M. Green Chemistry. Edu. Chem. 2000, 37(2), 40–46.
  • Hoyle, W.; Lancaster, M. Clean Technology for the Manufacture of Speciality Chemicals; London, UK: Royal Society of Chemistry, 2001; p 104.
  • Black D. S. C. Green Chemical Reactions, Proceedings of the NATO Advanced Study Institute on New Organic Chemistry Reactions and Methodologies for Green Production, Lecce, Italy, 29 Oct–10 Nov, 2006; Tundo, P., Esposito, V., Eds.; Springer Science+Business Media BV: Dordrecht, 2008.
  • Kidwai, M.; Mohan, R. Green Chemistry: An Innovative Technology. Found. Chem. 2005, 7(3), 279–287.
  • Manley, J. B.; Anastas, P. T.; Berkeley, W. C. J. Frontiers in Green Chemistry: Meeting the Grand Challenges for Sustainability in R&D and Manufacturing. J. Clean Prod. 2008, 16, 743–750.
  • Wilkinson, S. L. ‘Green’ is Practical, Even Profitable. No longer a Luxury, Green Chemistry becomes a Central Strategy for Sustainable firms. Chem. Eng. News 1997, 75(31), 35–43.
  • Anastas, P.; Williamson, T. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes; Oxford University Press: Oxford, UK, 1998.
  • Dunn, P. J.; Galvin, S.; Hettenbach, K. The Development of an Environmentally Benign Synthesis of Sildenafil Citrate (Viagra™) and its Assessment by Green Chemistry Metrics. Green Chem. 2004, 6, 43–48.
  • Sheldon, R. A. Organic Synthesis-Past, Present and Future. Chem. Ind. 1992, 23, 903–906.
  • Kirchhoff, M. M. Promoting Sustainability through Green Chemistry. Resour. Conserv. Recy. 2005, 44, 237–243.
  • Sheldon, R. A. The E Factor: Fifteen Years on Green Chemistry. Green Chem. 2007, 9(12), 1273–1283.
  • Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998; p 30.
  • Geiser, K. Cleaner Production Perspectives 2: Integrating CP into Sustainability Strategies. Ind. Environ. 2001, 24, 33–36.
  • Sheldon, R. A. Consider the Environmental Quotient. Chem. Technol. 1994, 24(3), 38–47.
  • Trost, B. M. The Atom Economy–A Search for Synthetic Efficiency. Science 1991, 254, 1471–1477.
  • Cann, M. C.; Connelly, M. E. Real World Cases in Green Chemistry. Am. Chem. Soc. 2001.
  • Trost, B. M. Atom Economy–A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way. Angew. Chem. Int. Edn. 1995, 34, 259–281.
  • Dicks, A. P.; Hent, A. Green Chemistry Metrics, A Guide to Determining and Evaluating Process Greenness; Springer Briefs in Green Chemistry for Sustainability, University of Toronto: Toronto, ON, Canada, 2015.
  • Ravichandran, S. Green Chemistry—A Potential tool for Chemical Synthesis. Int. J. Chem. Tech. Res. 2010, 2(4), 2188–2191.
  • Makone, M. S. S.; Niwadange, S. N. Green Chemistry Alternatives for Sustainable Development in Organic Synthesis. IARJSET 2016, 3(6), 113–115.
  • OECD Environmental Health and Safety Publications, Series on Risk Management No. 21 10, “Proceedings of the OECD Workshop on Sustainable Chemistry”, Venice, 15–17 October 1998, 204–205, 1999.
  • Wilson, M. P.; Chia, D. A.; Ehlers, B. C. Green Chemistry in California: A Framework for Leadership in Chemicals Policy and Innovation. California Policy Research Center, University of California: Berkeley, 2006.
  • Grover, V. Green Chemistry Tools: Strengthening Chemical Sciences for Sustainable Development. IJSTM 2015, 4(1), 627–634.
  • Eckert, C. A.; Glaeser, R.; Brown, J. S. Tuning of Chemical Reactions with Expanded Solids, Proceeding of the fifth Conference of Supercritical fluids and their Applications, Verona, Italy, 1999.
  • Otto, S.; Engberts, J. B. F. N. Diels-Alder Reactions in water. Pure Appl. Chem. 2000, 72, 1365–1372.
  • Varma, R. S. Solvent-Free Organic Synthesis: Using Supported Reagents and Microwave Irradiation. Green Chem. 1999, 1, 43–55.
  • Kidwai, M. Dry Media Reactions. Pure Appl. Chem. 2001, 73(4), 147–151.
  • Khurana, J. M. Sonochemistry. Chem. Edu. 1990, 247(4949), 24–29.
  • Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Raj, K. S.; Prasad, A. R. Ultrasound-Accelerated Synthesis of 3,4-Dihydropyrimidin-2 (1H)-Ones with Ceric Ammonium Nitrate. J. Chem. Soc. Perkin Trans. 2000, 1, 1939–1941.
  • Talaviya, S.; Majmudar, F. Green Chemistry: A Tool in Pharmaceutical Chemistry. NHLJMS 2012, 1(1), 7–13.
  • Mestres, R. Green Chemistry. Environ. Sci. Pollut. Res. 2005, 12(3), 128–132.
  • Dunn, P. J. The Importance of Green Chemistry in Process Research and Development. Chem. Soc. Rev. 2012, 41, 1452–1461.
  • Cannon, A. S.; Warner, J. C. Noncovalent Derivatization: Green Chemistry Applications of Crystal Engineering. Cryst. Growth Des. 2002, 2(4), 255–257.
  • Anastas, P. T.; Kirchhoff, M. M.; Williamson, T. C. Catalysis as a Foundational Pillar of Green Chemistry. Appl. Catal. A-Gen. 2001, 221, 3–13.
  • Sheldon, R. A. Atom Efficiency and Catalysis in Organic Synthesis. Pure Appl. Chem. 2000, 72, 1233–1246.
  • Jones, J. B. Enzymes in Organic Synthesis. Tetrahedron 1986, 42, 3351–3403.
  • Chen, C. S.; Sih, C. J. General Aspects and Optimization of Enantioselective Biocatalysis in Organic Solvents. Angew. Chem. Int. Edn. 1989, 28, 695–707.
  • Sheldon, R. A. Fundamentals of Green Chemistry: Efficiency in Reaction Design. Chem. Soc. Rev. 2012, 41, 1437–1451.
  • Sheldon, R. A. E Factors, Green Chemistry and Catalysis: An Odyssey. Chem. Commun. 2008, 41, 3352–3365.
  • Dua, R.; Shrivastava, S.; Shrivastava, S. L.; Srivastava, S. K. Green Chemistry and Environmentally Friendly Technologies: A Review. Middle-East J. Sci. Res. 2012, 11(7), 846–855.
  • Simpson III, R. L.; Bock, C. L.; Robbat, J. A. Dynamic Workplans and Field Analytics: Metals Assessment by Inductively Coupled Plasma Optical Emission Spectroscopy. Remed. J. 1999, 9(4), 65–78.
  • Robbat, J. A.; Smarason, S.; Gankin, Y. Dynamic Work Plans and Field Analytics, the Keys to Cost Effective Hazardous Waste Site Investigations. Field Anal. Chem. Tech. 1998, 2(5), 253–265.
  • Robbat, J. A.; Smarason, S.; Gankin, Y. Fast Gas Chromatography/Mass Spectrometry Analysis in Support of Risk-Based Decisions. Field Anal. Chem. Tech. 1999, 3(1), 55–66.
  • Rogers, R. D.; Seddon, K. R. Ionic Liquids–Solvents of the Future? Science 2003, 302(5646), 792–793.
  • Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH Verlag GmbH and Co. KGaA: Weinheim, Germany, 2003.
  • Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of Cellulose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124(18), 4974–4975.
  • Reddy, M. B. M.; Pasha, M. A. Environment Friendly Protocol for the Synthesis of Nitriles from Aldehydes. Chin. Chem. Lett. 2010, 21, 1025–1028.
  • Shams, S. S.; Zhang, L. S.; Hu, R.; Zhang, R.; Zhu, J. Synthesis of Graphene from Biomass: A Green Chemistry Approach. Mater. Lett. 2015, 161, 476–479.
  • Singh, R. K.; Duvedi, R. Environment-Friendly Green Chemistry Approaches for an Efficient Synthesis of 1-Amidoalkyl-2-Naphthols Catalyzed by Tannic Acid. Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2014.08.022 ( accessed Sept 21 2014).
  • Prajapati, D.; Bhuyan, D.; Gohain, M.; Hu, W. Green Chemistry Approaches to the Regioselective Synthesis of Spiro Heterobicyclic Rings Using Iodine as a New and Efficient Catalyst Under Solvent-Free Conditions. Mol. Divers 2011, 15, 257–261.
  • García-Astrain, C.; Gandini, A.; Coelho, D.; Mondragon, I.; Retegi, A.; Corcuera, M. A.; Gabilondo, N. Green Chemistry for the Synthesis of Methacrylate-Based Hydrogels Crosslinked Through Diels–Alder Reaction. Eur. Polym. J. 2013, 49, 3998–4007.
  • Lebaschi, S.; Hekmati, M.; Veisi, H. Green Synthesis of Palladium Nanoparticles Mediated by Black Tea Leaves (Camellia sinensis) Extract: Catalytic Activity in the Reduction of 4-Nitrophenol and Suzuki–Miyaura Coupling Reaction Under Ligand-Free Conditions. J. Colloid Interface Sci. 2017, 485, 223–231.
  • Dekamin, M. G.; Peyman, S. Z.; Karimi, Z.; Javanshir, S.; Naimi-Jamal, M. R.; Barikani, M. Sodium Alginate: An Efficient Biopolymeric Catalyst for Green Synthesis of 2-Amino-4H-Pyran Derivatives. Int. J. Biol. Macromolec. 2016, 87, 172–179.
  • Yazdani-Elah-Abadi, A.; Maghsoodlou, M. T.; Mohebat, R.; Heydari, R. Theophylline as a New and Green Catalyst for the One-Pot Synthesis of Spiro[Benzo[a]Pyrano[2,3-c]Phenazine] and Benzo[a]Pyrano[2,3-c]Phenazine Derivatives Under Solvent-Free Conditions. Chin. Chem. Lett. 2016, 28(2), 446–452. (Accepted manuscript).
  • Nasab, N. K.; Dehnad, A. R.; Salimizand, H.; Taherzadeh, D.; Prakash, D.; Verma, K. D.; Darroudi, M. Zinc Selenide Nanoparticles (ZnSe-NPs): Green Synthesis and Investigation of their Cytotoxicity Effects. Ceram. Int. 2016, 42, 12115–12118.
  • Gingasu, D.; Mindru, I.; Mocioiu, O. C.; Preda, S.; Stanica, N.; Patron, L.; Ianculescu, A.; Oprea, O.; Paraschiv, I.; Popa, M.; Saviuc, C.; Bleotu, C.; Chifiriuc, M. C. Synthesis of Nanocrystalline Cobalt Ferrite Through Soft Chemistry Methods: A Green Chemistry Approach Using Sesame Seed Extract. Mater. Chem. Phys. 2016, 182, 219–230.
  • Maleki, A.; Aghaei, M. Ultrasonic Assisted Synergetic Green Synthesis of Polycyclic Imidazo (Thiazolo)Pyrimidines by Using Fe3O4@ Clay Core-Shell. Ultrason. Sonochem. 2016, 38, 585–589.
  • Xinfu, M.; Qingquan, G.; Yu, X.; Haixiang, M. Green Chemistry for the Preparation of L-Cysteine Functionalized Silver Nanoflowers. Chem. Phys. Lett. 2016, 652, 148–151.
  • Namieśnik, J. Trends in Environmental Analytics and Monitoring. Crit. Rev. Anal. Chem. 2000, 30, 221–269.
  • Armenta, S.; Garrigues, S.; Guardia, M. D. L. Green Analytical Chemistry. Trends Anal. Chem. 2008, 27(6), 497–511.
  • Koel, M.; Kaljurand, M. Application of the Principles of Green Chemistry in Analytical Chemistry. Pure Appl. Chem. 2006, 78, 1993–2002.
  • Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green Analytical Chemistry–Theory and Practice. Chem. Soc. Rev. 2010, 39, 2869–2878.
  • Tobiszewski, M.; Mechlińska, A.; Zygmunt, B.; Namieśnik, J. Green Analytical Chemistry in Sample Preparation for Determination of Trace Organic Pollutants. Trends Anal. Chem. 2009, 28(8), 943–951.
  • Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the Significance Mnemonic of Green Analytical Practices. Trends Anal. Chem. 2013, 50, 78–84.
  • Guardia, M. D. L.; Garrigues, S. Handbook of Green Analytical Chemistry; John Wiley & Sons, Ltd: UK, 2012.
  • Afonso, C. A. M.; Crespo, J. G. Green Separation Processes: Fundamentals and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005.
  • Guardia, M. D. L.; Armenta, S. Green Analytical Chemistry: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2011.
  • Ragab, M. A.; Korany, M. A.; Michail, K.; Issa, A. E.; Daabees, H. M.; Elkafrawy, D. S. Discrete Fourier Transform Convoluted Densitometric Peak Responses for the Determination of Methocarbamol in Different Pharmaceutical Mixtures in the Presence of its Degradation Product. J. Liq. Chrom. Rel. Technol. 2014, 37, 1999–2020.
  • Korany, M. A.; Maher, H. M.; Galal, S. M.; Fahmy, O. T.; Ragab, M. A. Non-Parametric Linear Regression of Discrete Fourier Transform Convoluted Chromatographic Peak Responses Under Non-Ideal Conditions of Internal Standard Method. Talanta 2010, 83(1), 93–109.
  • Korany, M. A.; Maher, H. M.; Galal, S. M.; Ragab M. A. Comparative Study of Some Robust Statistical Methods: Weighted, Parametric, and Nonparametric Linear Regression of HPLC Convoluted Peak Responses Using Internal Standard Method in Drug Bioavailability Studies. Anal. Bioanal. Chem. 2013, 405(14), 4835–4848.
  • Ragab, M. A.; Youssef, R. M. Simultaneous Determination of Montelukast and Fexofenadine Using Fourier Transform Convolution Emission Data Under Non-Parametric Linear Regression Method. J. Fluoresc. 2013, 23(6), 1329–1340.
  • Ragab, M. A.; EL-Kimary, E. I. Convolution of Emission Derivative Ratio Curves of Closely Related Fluorescent Reaction Products Using Discrete Fourier Functions and Non-Parametric Linear Regression Method. J. Fluoresc. 2014, 24(6), 1745–1756.
  • Korany, M. A.; Ibrahim, H. Z.; Ragab, M. A.; Abdel-Kawi, M. A.; Sayed, A. A. Derivative-Fourier Transforms-Polynomial Fit: A Coupling of Interest in Common Non-Ideal Cases Arises During Trace Metal Analysis Using Graphite Furnace Atomic Absorption Spectrometry. RSC Adv. 2015, 5, 47866–47875.
  • Korany, M. A.; Haggag, R. S.; Ragab, M. A.; Elmallah, O. A. Kinetic Investigation of Pentoxifylline Based on Nonparametric Linear Regression of Derivative and Convoluted Derivative Chromatographic and Spectrophotometric Responses. J. Liq. Chrom. Rel. Technol. 2014, 37, 475–497.
  • Houbart, V.; Servais, A. C.; Charlier, T. D.; Pawluski, J. L.; Abts, F.; Fillet, M. A Validated Microfluidics-Based LC-Chip-MS/MS Method for the Quantitation of Fluoxetine and Norfluoxetine in Rat Serum. Electrophoresis 2012, 33, 1–10.
  • Oedit, A.; Vulto, P.; Ramautar, R.; Lindenburg, P. W.; Hankemeier, T. Lab-on-a-Chip Hyphenation with Mass Spectrometry: Strategies for Bioanalytical Applications. Curr. Opin. Biotechnol. 2015, 31, 79–85.
  • Rios, A.; Escarpa, A.; Simonet, B. Miniaturization of Analytical Systems: Principles. Designs and Applications; John Wiley & Sons, Ltd: UK, 2009.
  • Saito, Y. Miniaturization of Separation System and its Application. Chromatography 2003, 24(1), 7–17.
  • Bonastre, A.; Ors, R.; Capella, J. V.; Fabra, M. J.; Peris, M. In-Line Chemical Analysis of Wastewater: Present and Future Trends. Trends Anal. Chem. 2005, 24, 128–137.
  • Curyło, J.; Wardencki, W.; Namiesńik, J. Green Aspects of Sample Preparation—A Need for Solvent Reduction. Pol. J. Environ. Stud. 2007, 16, 5–16.
  • Płotkaa, J.; Tobiszewskia, M.; Suleja, A. M.; Kupskaa, M.; Goreckib, T.; Namiesńik, J. Green Chromatography. J. Chromatogr. A 2013, 1307, 1–20.
  • Armenta, S.; Garrigues, S.; Guardia, M. D. L. The Role of Green Extraction Techniques in Green Analytical Chemistry. Trends Anal. Chem. 2015, 71, 2–8.
  • Lavilla, I.; Romero, V.; Costas, I.; Bendicho, C. Greener Derivatization in Analytical Chemistry. Trends Anal. Chem. 2014, 61, 1–10.
  • Li, Y.; Fabiano-Tixier, A. S.; Vian, M. A.; Chemat, F. Solvent-Free Microwave Extraction of Bioactive Compounds Provides a Tool for Green Analytical Chemistry. Trends Anal. Chem. 2013, 47, 1–11.
  • Bendicho, C.; Calle, I. D. L.; Pena, F.; Costas, M.; Cabaleiro, N.; Lavilla, I. Ultrasound-Assisted Pretreatment of Solid Samples in the Context of Green Analytical Chemistry. Trends Anal. Chem. 2012, 31, 50–60.
  • Barr, D. B.; Landsittel, D.; Nishioka, M.; Thomas, K.; Curwin, B.; Raymer, J.; Donnelly, K. C.; McCauley, L.; Ryan, P. B. A Survey of Laboratory and Statistical Issues Related to Farmworker Exposure Studies. Environ. Health Perspect. 2006, 114, 961–968.
  • Wardencki, W.; Namieśnik, J. Some Remarks on Gas Chromatographic Challenges in the Context of Green Analytical Chemistry. Pol. J. Environ. Stud. 2002, 2, 185–187.
  • Dong, M. W. Modern HPLC for Practicing Scientists; John Wiley & Sons: NJ, 2006.
  • Katusz, R. M.; Bellew, L.; Mangravite, J. A.; Foery, R. F. Recovery of HPLC Grade Acetonitrile by Spinning Band Distillation. J. Chromatogr. 1981, 213, 331–336.
  • Welch, A. Reflections on a Third-Generation Mobile Phase Recycler for HPLC. Am. Lab. 2006, 38, 44–48.
  • Welch, C. J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; Zhou, L. Greening Analytical Chromatography. Trends Anal. Chem. 2010, 29(7), 667–680.
  • Giddings, J. C. Unified Separation Science; John Wiley: New York, USA, 1991.
  • Kaljurand, M.; Koel, M. Recent Advancements on Greening Analytical Separation. Crit. Rev. Anal. Chem. 2011, 41, 2–20.
  • Sandra, P.; Vanhoenacker, G.; David, F.; Sandra, K.; Pereira, A. Green Chromatography (Part 1): Introduction and Liquid Chromatography. LCGC Eur. 2010, 23(5), 242–259.
  • Chen, S.; Kord, A. Theoretical and Experimental Comparison of Mobile Phase Consumption Between Ultra-High-Performance Liquid Chromatography and High Performance Liquid Chromatography. J. Chromatogr A 2009, 1216(34), 6204–6209.
  • Cunliffe, J. M.; Maloney, T. D. Fused-Core Particle Technology as an Alternative to Sub-2-Microm Particles to Achieve High Separation Efficiency with Low Backpressure. J. Sep. Sci. 2007, 30(18), 3104–3109.
  • Pereira, A. S.; David, F.; Vanhoenacker, G.; Sandra, P. The Acetonitrile Shortage: Is Reversed HILIC with Water an Alternative for the Analysis of Highly Polar Ionizable Solutes? J. Sep. Sci. 2009, 32 (12), 2001–2007.
  • Gritti, F.; Pereira, A. S.; Sandra, P.; Guiochon, G. Efficiency of the Same Neat Silica Column in Hydrophilic Interaction Chromatography and Per Aqueous Liquid Chromatography. J. Chromatogr. A 2010, 1217(5), 683–688.
  • Li, Y.; Li, J.; Chen, T.; Liu, X.; Zhang, H. Covalently Bonded Polysaccharide-Modified Stationary Phase for Per Aqueous Liquid Chromatography and Hydrophilic Interaction Chromatography. J. Chromatogr. A 2011, 1218(11), 1503–1508.
  • Novotny, M. Microcolumn Liquid Chromatography: A Tool of Potential Significance in Biomedical Research. Clin. Chem. 1980, 26(10), 1474–1479.
  • Teutenberg, T. High-Temperature Liquid Chromatography: A User’s Guide for Method Development; Royal Society of Chemistry, Thomas Graham House: Cambridge, 2010.
  • Jones, B. A. Temperature Programmed Liquid Chromatography. J. Liq. Chrom. Rel. Technol. 2004, 27, 1331–1352.
  • Smith, R. M. Superheated Water: The Ultimate Green Solvent for Separation Science. Anal. Bioanal. Chem. 2006, 385, 419–421.
  • Yang, Y. Subcritical Water Chromatography: A Green Approach to High-Temperature Liquid Chromatography. J. Sep. Sci. 2007, 30(8), 1131–1140.
  • Smith, R. M. Superheated Water Chromatography—A Green Technology for the Future. J. Chromatogr. A 2008, 1184, 441–455.
  • Taylor, L. T. Supercritical Fluid Chromatography for the 21st Century. J. Supercrit. Fluids 2009, 47, 566–573.
  • Inamuddin, D.; Mohamed, A. Green Chromatographic Techniques, Separation and Purification of Organic and Inorganic Analytes; Springer: Netherlands, 2014.
  • Sankula, K.; Kota, S.; Nissankarrao, S. Supercritical Fluid Technology: Green Chemistry for the 21st Century. TPI J. 2014, 3(5), 19–24.
  • Sun, Q.; Olesik, S. V. Chiral Separations Performed by Enhanced-Fluidity Liquid Chromatography on a Macrocyclic Antibiotic Chiral Stationary Phase. Anal. Chem. 1999, 71(11), 2139–2145.
  • Koel, M. Ionic Liquids in Chemical Analysis. Crit. Rev. Anal. Chem. 2005, 35, 177–192.
  • Liu, J.; Jönsson, J. Å.; Jiang, G. Application of Ionic Liquids in Analytical Chemistry. Trends Anal. Chem. 2005, 24, 20–27.
  • Sun, P.; Armstrong, D. W. Ionic Liquids in Analytical Chemistry. Anal. Chim. Acta 2010, 661, 1–16.
  • Korany, M. A.; Gazy, A.; Khamis, E. F.; Ragab, M. A.; Kamal, M. Analysis of Closely Related Antioxidant Nutraceuticals Using the Green Analytical Methodology of ANN and Smart Spectrophotometric Methods. J. AOAC Int. 2017, 100, 8–17.
  • Campbell, E. R.; Warsko, K.; Davidson, A.; Campbell, W. H. Determination of Phosphate in Soil Extracts in the Field: A Green Chemistry Enzymatic Method. MethodsX 2015, 2, 211–218.
  • Pérez, R. L.; Escandar, G. M. Experimental and Chemometric Strategies for the Development of Green Analytical Chemistry (GAC) Spectroscopic Methods for the Determination of Organic Pollutants in Natural Waters. Susta. Chem. Pharm. 2016, 4, 1–12.
  • Jędrkiewicz, R.; Orłowski, A.; Namieśnik, J.; Tobiszewski, M. Green Analytical Chemistry Introduction to Chloropropanols Determination at No Economic and Analytical Performance Costs? Talanta 2016, 147, 282–288.
  • Vaher, M.; Kaljurand, M. The Development of Paper Microzone-Based Green Analytical Chemistry Methods for Determining the Quality of Wines. Anal. Bioanal. Chem. 2012, 404(3), 627–633.
  • Haq, N.; Iqbal, M.; Alanazi, F. K.; Alsarra, I. A.; Shakeel, F. Applying Green Analytical Chemistry for Rapid Analysis of Drugs: Adding Health to Pharmaceutical Industry. Arab. J. Chem. 2012, 10(1), S777–S785.
  • Mohammad, A.; Siddiq, A.; El-Desoky, G. E. Environmentally Preferable Solvents Promoted Resolution of Multi-Component Mixtures of Amino Acids: An Approach to Perform Green Chromatography. J. Anal. Sci. Technol. 2013, 4(10), 1–6.
  • Šatínský, D.; Brabcová, I.; Maroušková, A.; Chocholouš, P.; Solich, P. Green Chromatography Separation of Analytes of Greatly Differing Properties Using a Polyethylene Glycol Stationary Phase and a Low-Toxic Water-Based Mobile Phase. Anal. Bioanal. Chem. 2013, 405, 6105–6115.
  • Yanga, Y.; Stricklanda, Z.; Kapalavavia, B.; Marpleb, R.; Gamskyb, C. Industrial Application of Green Chromatography—I. Separation and Analysis of Niacinamide in Skincare Creams Using Pure Water as the Mobile Phase. Talanta 2011, 84, 169–174.
  • Youngvises, N.; Chaida, T.; Khonyoung, S.; Kuppithayanant, N.; Tiyapongpattana, W.; Itharat, A.; Jakmunee, J. Greener Liquid Chromatography Using a Guard Column with Micellar Mobile Phase for Separation of Some Pharmaceuticals and Determination of Parabens. Talanta 2013, 106, 350–359.
  • Dispasa, A.; Lebruna, P.; Sassiat, P.; Ziemonsa, E.; Thiébautb, D.; Vial, J.; Hubert, P. Innovative Green Supercritical fluid Chromatography Development for the Determination of Polar Compounds. J. Chromatogr. A 2012, 1256, 253–260.
  • El-Shaheny, R. N.; El-Enany, N. M.; Belal, F. F. A Green HPLC Method for the Analysis and Stability Study of Flavoxate HCl Using Micellar Eluent. Anal. Methods 2014, 6, 1001–1010.
  • Eldin, A. B.; Shalaby, A.; Abdallah, M. S.; Shaldam, M. A.; Abdallah, M. A. Applying Green Analytical Chemistry (GAC) for Development of Stability Indicating HPLC Method for Determining Clonazepam and its Related Substances in Pharmaceutical Formulations and Calculating Uncertainty. Arab. J. Chem. 2014. https://doi.org/10.1016/j.arabjc.2014.10.051 ( accessed Nov 18, 2014).
  • Eldin, A. B.; Ismaiel, O. A.; Hassan, W.; Shalaby, A. Development and Validation of Stability Indicating Green HPLC-UV Method for Determination of Cephalexin in Pharmaceutical Dosage Forms and Human Urine Using Micellar Mobile Phase. Int J. Pharm. Pharm. Sci. 2015, 7(9), 122–127.
  • Pedroso, T. M.; Medeiros, A. C. D.; Salgado, H. R. N. RP-HPLC X HILIC Chromatography for Quantifying Ertapenem Sodium with a Look at Green Chemistry. Talanta 2016, 160, 745–753.
  • Boussès, C.; Ferey, L.; Vedrines, E.; Gaudin, K. Using an Innovative Combination of Quality-by-Design and Green Analytical Chemistry Approaches for the Development of a Stability Indicating UHPLC Method in Pharmaceutical Products. J. Pharm. Biomed. Anal. 2015, 115, 114–122.
  • Kapalavavi, B.; Marple, R.; Gamsky, C.; Yang, Y. Separation of Sunscreens in Skincare Creams Using Greener High-Temperature Liquid Chromatography and Subcritical Water Chromatography. Int. J. Cosmet. Sci. 2012, 34, 169–175.
  • Carabajal, M. D.; Arancibia, J. A.; Escandar, G. M. A Green-Analytical Chemistry Method for Agrochemical-Residue Analysis in Vegetables. Microchem. J. 2016, 128, 34–41.
  • Xuewei, P.; Guofang, Y.; Xianguo, L.; Xinyun, G.; Xiao, Z.; Yan, W. Optimization of Ultrasonic Extraction and Clean-Up Protocol for the Determination of Polycyclic Aromatic Hydrocarbons in Marine Sediments by High-Performance Liquid Chromatography Coupled with Fluorescence Detection. J. Ocean Univ. China (Ocean. Coastal Sea Res.) 2012, 11 (3), 331–338.
  • Ansari, M.; Kazemipour, M.; Fathi, S. Development of a Simple Green Extraction Procedure and HPLC Method for Determination of Oleuropein in Olive Leaf Extract Applied to a Multi-Source Comparative Study. J. Iran. Chem. Soc. 2011, 8(1), 38–47.
  • Serrano, M.; Silva, M.; Gallego, M. Development of an Environment-Friendly Microextraction Method for the Determination of Aliphatic and Aromatic Aldehydes in Water. Anal. Chim. Acta 2013, 784, 77–84.
  • Turner, C. Sustainable Analytical Chemistry—More Than Just Being Green. Pure Appl. Chem. 2013, 85, 2217–2229.
  • Keith, L. H.; Gron, L. U.; Young, J. L. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708.
  • Tobiszewski, M.; Marc, M.; Galuszka, A.; Namiesnik, J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, 20, 10928–10946.
  • Galuszka, A.; Konieczka, P.; Migaszewski, Z. M.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. Trends Anal. Chem. 2012, 37, 61–72.
  • Aken, K. V.; Strekowski, L.; Patiny, L. EcoScale, a Semi-Quantitative Tool to Select an Organic Preparation Based on Economical and Ecological Parameters. Beilstein J. Org. Chem. 2006, 2(3), 3.
  • Gaber, Y.; Tornvall, U.; Kumar, M. A.; Amin, M. A.; Hatti-Kaul, R. HPLC-EAT (Environmental Assessment Tool): A Tool for Profiling Safety, Health and Environmental Impacts of Liquid Chromatography Methods. Green Chem. 2011, 13, 2021–2025.
  • Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W. P.; Suh, S.; Weidema, B. P.; Pennington, D. W. Life Cycle Assessment Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications. Environ. Int. 2004, 30(5), 701–720.
  • Pennington, D. W.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, G. Life Cycle Assessment Part 2: Current Impact Assessment Practice. Environ. Int. 2004, 30(5), 721–739.
  • Vorst, G. V. D.; Langenhove, H. V.; Paep, F. D.; Aelterman, W.; Dingenen, J.; Dewulf, J. Exergetic Life Cycle Analysis for the Selection of Chromatographic Separation Processes in the Pharmaceutical Industry: Preparative HPLC Versus Preparative SFC. Green Chem. 2009, 11, 1007–1012.
  • Secchi, M.; Castellani, V.; Collina, E.; Mirabella, N.; Sala, S. Assessing Eco-Innovations in Green Chemistry: Life Cycle Assessment (LCA) of a Cosmetic Product with a Bio-Based Ingredient. J. Clean. Prod. 2016, 129, 269–281.
  • Yang, Y.; Lu, G.; Guo, X.; Yamamoto, R. Greenness Assessment of Products in PLCA by DEA Approach. Mater. Trans. 2003, 44(4), 645–648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.