267
Views
5
CrossRef citations to date
0
Altmetric
Review

Biochromatographic applications of polymethacrylate monolithic columns used in electro- and liquid phase-separationsΨ

, , &

References

  • Sestak, J.; Moravcova, D.; Kahle, V. J. Instrument Platforms for Nano Liquid Chromatography. J Chromatogr. A. 2015, 1421, 2–17. DOI: 10.1016/j.chroma.2015.07.090.
  • Zou, H.; Huang, X.; Ye, M.; Luo, Q. Monolithic Stationary Phases for Liquid Chromatography and Capillary Electrochromatography. J Chromatogr. A. 2002, 954, 5–32. DOI: 10.1016/S0021-9673(02)00072-9.
  • Jandera, P.; Urban, J. Polymethacrylate Monolithic Columns for Capillary Liquid Chromatography. J. Sep. Sci. 2008, 31, 2521–2540.
  • Vlakh, E. G.; Tennikova, T. Preparation of Methacrylate Monoliths. J. Sep. Sci. 2007, 30, 2801–2813. DOI: 10.1002/jssc.200700284.
  • Vlakh, E. G.; Tennikova, T. Applications of Polymethacrylate-Based Monoliths in High-Performance Liquid Chromatography. J Chromatogr. A. 2009, 1216, 2637–2650. DOI: 10.1016/j.chroma.2008.09.090.
  • Svec, F. Porous Polymer Monoliths: Amazingly Wide Variety of Techniques Enabling Their Preparation. J Chromatogr. A. 2010, 1217, 902–924. DOI: 10.1016/j.chroma.2009.09.073.
  • Groarke, R. J.; Brabazon, D. Methacrylate Polymer Monoliths for Separation Applications. Materials. 2016, 9, 446. DOI: 10.3390/ma9060446.
  • Peterka, M.; Glover, D.; Kramberger, P.; Banjac, M.; Podgornik, A.; Barut, M.; Strancar, A. Short Monolithic Columns – An Enabling Technology for the Purification of Proteins, DNA and Viruses. Bioprocess. J. 2005, 4, 79–84. DOI: 10.12665/J42.Peterka.
  • Puyana, M. C.; Crego, A. L.; Marina, M. L. Recent Advances in the Analysis of Antibiotics by CE and CEC. Electrophoresis. 2010, 31, 229. DOI: 10.1002/elps.200900402.
  • Aydoğan, C.; Yılmaz, F.; Çimen, D.; Andaç, M.; Shaikh, H.; Denizli, A. Study on an Hydrophilic Interaction Electrochromatography Method for Separation of Sulfonamide Antibiotics. Hacettepe J. Biol. Chem. 2014, 42, 443–450.
  • Cheng, Y. J.; Huang, S. H.; Singco, B.; Huang, H. Y. Analyses of Sulfonamide Antibiotics in Meat Samples by on-Line Concentration Capillary Electrochromatography–Mass Spectrometry. J. Chromatogr. A. 2011, 1218, 7640–7647. DOI: 10.1016/j.chroma.2011.06.027.
  • Lin, S. L.; Wang, C. C.; Fuh, M. R. Chromatographic Selectivity of Poly(Alkyl Methacrylate-Co-Divinylbenzene) Monolithic Columns for Polar Aromatic Compounds by Pressure-Driven Capillary Liquid Chromatography. J Chromatogr. A. 2016, 939, 117–127.
  • Lammerhofer, M.; Svec, F.; Frechet, J. M. J.; Lindner, W. Capillary Electrochromatography in Anion-Exchange and Normal-Phase Mode Using Monolithic Stationary Phases. J Chromatogr. A. 2001, 925, 265–277. DOI: 10.1016/S0021-9673(01)01034-2.
  • Yang, G.; Liu, H.; Zhang, H.; Wang, S.; Yin, J.; Yin, B.; Chen, Y. On-Line Simultaneous Removal of Human Serum Albumin and Enrichment of Doxazosin Using a Weak Cation-Exchange Monolithic Column. J Chromatogr. A. 2006, 1129, 231–235. DOI: 10.1016/j.chroma.2006.07.029.
  • Zhang, L.-K.; Zhang, J.; Wang, H.; Zhang, L.-H.; Zhang, W.-B.; Zhang, Y.-K. Analysis of Flavonoids in Leaves of Adinandra Nitida by Capillary Electrochromatography on Monolithic Columns with Stepwise Gradient Elution. J. Sep. Sci. 2005, 28, 774–779. DOI: 10.1002/jssc.200400080.
  • Lü, H.; Wang, J.; Wang, X.; Lin, X.; Wu, X.; Xie, Z. Rapid Separation and Determination of Structurally Related Anthraquinones in Rhubarb by Pressurized Capillary Electrochromatography. J. Pharm. Biomed. Anal. 2007, 43, 352–357. DOI: 10.1016/j.jpba.2006.06.023.
  • Guo, H.; Wang, L.; Bi, K.; Sun, Y. Determination of Troxerutin in Troxerutin Tablets by Monolithic Capillary Electrophotography. J. Liq. Chromatogr. Rel. Technol. 2005, 28, 647–658. DOI: 10.1081/JLC-200048880.
  • Jandera, P. Advances in the Development of Organic Polymer Monolithic Columns and Their Applications in Food analysis – A Review. J. Chromatogr. A. 2013, 1313, 37–53. DOI: 10.1016/j.chroma.2013.08.010.
  • Chen, Z.; Cai, Y.; Cheng, J.; Zhang, L. Electrochromatographic Characterization of Methacrylate Ester-Based Monolith and Capillary Electrochromatography Separation of Flavonoids. J Chromatogr. B. 2010, 878, 2375–2378. DOI: 10.1016/j.jchromb.2010.07.005.
  • Wang, T.-T.; Chen, Y.-H.; Ma, J.-F.; Hu, M.-J.; Li, Y.; Fang, J.-H.; Gao, H.-Q. A Novel Ionic Liquid-Modified Organic-Polymer Monolith as the Sorbent for in-Tube Solid-Phase Microextraction of Acidic Food Additives. Anal. Bioanal. Chem. 2014, 406, 4955–4963. DOI: 10.1007/s00216-014-7923-4.
  • Škeříková, V.; Jandera, P. Effects of the Operation Parameters on Hydrophilic Interaction Liquid Chromatography Separation of Phenolic Acids on Zwitterionic Monolithic Capillary Columns. J Chromatogr. A. 2010, 1217, 7981–7989. DOI: 10.1016/j.chroma.2010.07.061.
  • Xin, L.; Man-Man, W.; Guo-Ying, Z.; Lian-Feng, A.; Xue-Sheng, W. Fast and Online Determination of Five Avermectin Residues in Foodstuffs of Plant and Animal Origin Using Reusable Polymeric Monolithic Extractor Coupled with LC-MS/MS. J. Agric. Food Chem. 2015, 63, 4096–4103.
  • Liu, W.; Qi, J.; Yan, L.; Jia, Q.; Yu, C. Application of Poly(Butyl Methacrylate-Co-Ethylene Glycol Dimethacrylate) Monolith Microextraction Coupled with High Performance Liquid Chromatography to the Determination of Polycyclic Aromatic Hydrocarbons in Smoked Meat Products. J. Chromatogr. B. 2011, 879, 3012–3016. DOI: 10.1016/j.jchromb.2011.08.038.
  • Li, L.; Xia, L. R.; Zhao, Y. F.; Wang, H. Y. Development of Immune-Affinity 96 Spots Monolith Array for Multiple Mycotoxins Detection in Food Samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1029–1030, 72–80. DOI: 10.1016/j.jchromb.2016.07.012.
  • Liu, S.; Zong, J.; Wei, Z.; Zhang, H.; Bai, L.; Liu, H.; Yan, H. Determination of Trace Macrolide Antibiotics in Milk with Online Solid-Phase Extraction with an Ionic-Liquid-Based Monolithic Column. J. Appl. Polym. Sci. 2016, 133, 43943–4397p.
  • Zhang, J.; Bao, T.; Chen, Z. Determination of Polycyclic Aromatic Hydrocarbons on SMA-EGDMA Polymeric Monolith Column by Capillary Electrochromatography. Anal. Meth. 2012, 4, 4140–4145. DOI: 10.1039/c2ay25953b.
  • Liu, H. Y.; Lin, S. L.; Fuh, M. R. Determination of Chloramphenicol, Thiamphenicol and Florfenicol in Milk and Honey Using Modified QuEChERS Extraction Coupled with Polymeric Monolith-Based Capillary Liquid Chromatography Tandem Mass Spectrometry. Talanta 2016, 150, 233–239. DOI: 10.1016/j.talanta.2015.12.045.
  • Mitulovic, G. New HPLC Techniques for Proteomics Analysis: A Short Overview of Latest Developments. J. Liq. Chromatogr. Rel. Technol. 2015, 38, 390–403.
  • Tetala, K. K. R.; van Beek, T. A. Bioaffinity Chromatography on Monolithic Supports. J. Sep. Sci. 2010, 33, 422–438. DOI: 10.1002/jssc.200900635.
  • Arrua, R. D.; Talebi, M.; Causon, T. J.; Hilder, E. F. Review of Recent Advances in the Preparation of Organic Polymer Monoliths for Liquid Chromatography of Large Molecules. Anal. Chim. Acta. 2012, 738, 1–12. DOI: 10.1016/j.aca.2012.05.052.
  • Hong, T.; Yang, X.; Xu, Y.; Ji, Y. Recent Advances in the Preparation and Application of Monolithic Capillary Columns in Separation Science. Anal. Chim. Acta. 2016, 931, 1–24. DOI: 10.1016/j.aca.2016.05.013.
  • Xu, L.; Shi, Z. G.; Feng, Y. Q. Porous Monoliths: sorbents for Miniaturized Extraction in Biological Analysis. Anal. Bioanal. Chem. 2011, 399, 3345–3357. DOI: 10.1007/s00216-010-4190-x.
  • Eeltink, S.; Wouters, S.; Dores-Sousa, J. L.; Svec, F. Advances in Organic Polymer-Based Monolithic Column Technology for High-Resolution Liquid Chromatography-Mass Spectrometry Profiling of Antibodies, Intact Proteins, Oligonucleotides, and Peptides. J Chromatogr. A. 2017, 1498, 8–21. DOI: 10.1016/j.chroma.2017.01.002.
  • Rathnasekara, R.; Khadka, S.; Jonnada, M.; El Rassi, Z. Polar and Nonpolar Organic Polymer-Based Monolithic Columns for Capillary Electrochromatography and High-Performance Liquid Chromatography. Electrophoresis 2017, 38, 60–79. DOI: 10.1002/elps.201600356.
  • Jiang, X.; Zhang, D.; Li, X.; Wang, X.; Bai, L.; Liu, H.; Yan, H. Fabrication of a Novel Hemin-Based Monolithic Column and Its Application in Separation of Protein from Complex Bio-Matrix. J. Pharm. Biomed. Anal. 2017, 138, 14–21. DOI: 10.1016/j.jpba.2017.01.035.
  • Aydoğan, C. Boronic Acid-Fumed Silica Nanoparticles Incorporated Large Surface Area Monoliths for Protein Separation by Nano-Liquid Chromatography. Anal. Bioanal. Chem. 2016, 408, 8457–8466. DOI: 10.1007/s00216-016-9968-z.
  • Bai, L.; Wang, J.; Zhang, H.; Liu, S.; Qin, J.; Liu, H. Ionic Liquid as Porogen in the Preparation of a Polymer-Based Monolith for the Separation of Protein by High Performance Liquid Chromatography. Anal. Meth. 2015, 7, 607–613. DOI: 10.1039/C4AY02200A.
  • Wang, H.; Ou, J.; Bai, J.; Liu, Z.; Yao, Y.; Chen, L.; Peng, X.; Zou, H. Improving Permeability and Chromatographic Performance of Poly(Pentaerythritol Diacrylate Monostearate) Monolithic Column via Photo-Induced Thiol-Acrylate Polymerization. J Chromatogr. A. 2016, 1436, 100–108. DOI: 10.1016/j.chroma.2016.01.063.
  • Du, K.; Zhang, Q.; Dan, S.; Yang, M.; Zhang, Y.; Chai, D. Fabrication and Characterization of Aligned Macroporous Monolith for High-Performance Protein Chromatography. J. Chromatogr. A. 2016, 1443, 111–117. DOI: 10.1016/j.chroma.2016.03.026.
  • Simone, P.; Pierri, G.; Capitani, D.; Ciogli, A.; Angelini, G.; Ursini, O.; Gentile, G.; Cavazzini, A.; Villani, C.; Gasparrini, F. Capillary Methacrylate-Based Monoliths by Grafting from/to γ-Ray Polymerization on a Tentacle-Type Reactive Surface for the Liquid Chromatographic Separations of Small Molecules and Intact Proteins. J. Chromatogr. A. 2017, 1498, 46–55. DOI: 10.1016/j.chroma.2016.11.039.
  • Raeni, S. F.; Allwicher, I.; Iftitah, E. D.; Sabarudin, A. Development of Ti4+-Immobilized Nanoporous Monolithic Polymer for Selective Separation and Detection of Phosphopeptides. Rasayan J. Chem. 2018, 11, 345–354.
  • Jonnada, M.; El Rassi, Z. Poly(N-Acryloxysuccinimide-Co-Ethylene Glycol Dimethacrylate) Precursor Monolith and Its Post Polymerization Modification with Alkyl Ligands, Trypsin and Lectins for Reversed-Phase Chromatography, Miniaturized Enzyme Reactors and Lectin Affinity Chromatography, Respectively. Electrophoresis 2017, 38, 2870–2879. DOI: 10.1002/elps.201700221.
  • Aydoğan, C.; El Rassi, Z. Monolithic Stationary Phases with Incorporated Fumed Silica Nanoparticles. Part II. Polymethacrylate-Based Monolithic Column with “Covalently” Incorporated Modified Octadecyl Fumed Silica Nanoparticles for Reversed-Phase Chromatography. J. Chromatogr. A. 2016, 1445, 62–67. DOI: 10.1016/j.chroma.2016.03.083.
  • Zhang, D.; Zhao, Y.; Lan, D.; Pang, X.; Bai, L.; Liu, H.; Yan, H. Fractionation Separation of Human Plasma Proteins Using HPLC with a Homemade Iron Porphyrin Based Monolithic Column. J. Chromatogr. B. 2017, 1068–1069, 358–364. DOI: 10.1016/j.jchromb.2017.11.003.
  • Lubbad, S. H. Wide-Bore Columns of Poly(Glycidyl Methacrylate-Co-Divinylbenzene)-Based Monolithic Beds for Reversed-Phase and Anion-Exchange Chromatographic Separation of Biomolecules. J. Chromatogr. Sci. 2017, 55, 205–213.
  • Aydoğan, C.; Yılmaz, F.; Denizli, A. Cation Exchange/Hydrophobic Interaction Monolithic Chromatography of Small Molecules and Proteins by Nano Liquid Chromatography. J. Sep. Sci. 2013, 36, 1685–1692. DOI: 10.1002/jssc.201300089.
  • Guerrouache, M.; Khalil, A. M.; Kebe, S.; Droumaguet, B. L.; Chergui, S. M.; Carbonnier, B. Monoliths Bearing Hydrophilic Surfaces for in Vitro Biomedical Samples Analysis. Surf. Innov. 2015, 3, 84–102. DOI: 10.1680/sufi.14.00011.
  • Jiang, Z.; Smith, N. W.; Ferguson, P. D.; Taylor, M. R. Hydrophilic Interaction Chromatography Using Methacrylate-Based Monolithic Capillary Column for the Separation of Polar Analytes. Anal. Chem. 2007, 79, 1243–1250. DOI: 10.1021/ac061871f.
  • Wu, R. R.; Liu, H. Y.; Lin, S. L.; Fuh, M. R. Quantification of 7-Aminoflunitrazepam in Human Urine by Polymeric Monolith-Based Capillary Liquid Chromatography Coupled to Tandem Mass Spectrometry. Talanta 2018, 176, 293–298. DOI: 10.1016/j.talanta.2017.08.040.
  • Chen, Y.; Meng, J.; Zou, J.; An, J. Selective Extraction Based on Poly(MAA-VB-EGMDA) Monolith Followed by HPLC for Determination of Hordenine in Plasma and Urine Samples. Biomed. Chromatogr. 2015, 29, 869–875. DOI: 10.1002/bmc.3367.
  • Peng, K.; Wang, Q.; Chen, W.; Xia, D.; Zhou, Z.; Wang, Y.; Jiang, Z.; Wu, F. Phosphatidic Acid-Functionalized Monolithic Stationary Phase for Reversed-Phase/Cation-Exchange Mixed Mode Chromatography. RSC Adv. 2016, 6, 100891–100898. DOI: 10.1039/C6RA21504A.
  • Tasfiyati, A. N.; Iftitah, E. D.; Sakti, S. P.; Sabarudin, A. Evaluation of Glycidyl Methacrylate-Based Monolith Functionalized with Weak Anion Exchange Moiety inside 0.5 mm i.d. column for Liquid Chromatographic Separation of DNA. Anal. Chem. Res. 2016, 7, 9–16. DOI: 10.1016/j.ancr.2015.11.001.
  • Aydoğan, C. A New Anion-Exchange/Hydrophobic Monolith as Stationary Phase for Nano Liquid Chromatography of Small Organic Molecules and Inorganic Anions. J. Chromatogr. A. 2015, 1392, 63–68. DOI: 10.1016/j.chroma.2015.03.014.
  • Pierri, C.; Kotoni, D.; Simone, P.; Villani, C.; Pepe, G.; Campiglia, P.; Dugo, P.; Gasparrini, F. Analysis of Bovine Milk Caseins on Organic Monolithic Columns: An Integrated Capillary Liquid Chromatography–High Resolution Mass Spectrometry Approach for the Study of Time-Dependent Casein Degradation. J. Chromatogr. A. 2013, 1313, 259–269. DOI: 10.1016/j.chroma.2013.08.083.
  • WHOAntimicrobial Resistance Fact Sheet. http://www.who.int/mediacentre/factsheets/fs194/en/ (accessed Jun 1, 2016).
  • Barut, M.; Podgornik, A.; Brne, P.; Strancar, A. Convective Interaction Media Short Monolithic Columns: Enabling Chromatographic Supports for the Separation and Purification of Large Biomolecules. J. Sep. Sci. 2005, 28, 1876–1892. DOI: 10.1002/jssc.200500246.
  • Bencina, M.; Podgornik, A.; Strancar, A. Characterization of Methacrylate Monoliths for Purification of DNA Molecules. J. Sep. Sci. 2004, 27, 801–810. DOI: 10.1002/jssc.200401784.
  • Smrekar, F.; Podgornik, A.; Ciringer, M.; Kontrec, S.; Raspor, P.; Strancar, A.; Peterka, M. Preparation of Pharmaceutical-Grade Plasmid DNA Using Methacrylate Monolithic Columns. Vaccine 2010, 28, 2039–2045. DOI: 10.1016/j.vaccine.2009.10.061.
  • Shin, M. J.; Tan, L.; Jeong, M. H.; Kim, J.-H.; Choe, W.-S. Monolith-Based Immobilized Metal Affinity Chromatography Increases Production Efficiency for Plasmid DNA Purification. J. Chromatogr. A. 2011, 1218, 5273–5278. DOI: 10.1016/j.chroma.2011.06.040.
  • Cardoso, S.; Černigoj, U.; Lendero Krajnc, N.; Štrancar, A. Chromatographic Purification of Plasmid DNA on Hydrophobic Methacrylate Monolithic Supports. Sep. Pur. Tech. 2015, 147, 139–146. DOI: 10.1016/j.seppur.2015.04.018.
  • Smrekar, F.; Ciringer, M.; Strancar, A.; Podgornik, A. Characterisation of methacrylate monoliths for bacteriophage purification. J. Chromatogr. A. 2011, 1218, 2438–2444. DOI: 10.1016/j.chroma.2010.12.083.
  • Urthaler, J.; Schlegl, R.; Podgornik, A.; Strancar, A.; Jungbauer, A.; Necina, R. Application of Monoliths for Plasmid DNA Purification Development and Transfer to Production. J. Chromatogr. A. 2005, 1065, 93–106. DOI: 10.1016/j.chroma.2004.12.007.
  • Jungbauer, A.; Hahn, R. Polymethacrylate Monoliths for Preparative and Industrial Separation of Biomolecular Assemblies. J. Chromatogr. A. 2008, 1184, 62–79. DOI: 10.1016/j.chroma.2007.12.087.
  • Podgornik, A.; Krajnc, N. L. Application of Monoliths for Bioparticle Isolation. J. Sep. Sci. 2012, 35, 3059–3072. DOI: 10.1002/jssc.201200387.
  • Smrekar, V.; Smrekar, F.; Strancar, A.; Podgornik, A. Single Step Plasmid DNA Purification Using Methacrylate Monolith Bearing Combination of Ion-Exchange and Hydrophobic Groups. J. Chromatogr. A. 2013, 1276, 58–64. DOI: 10.1016/j.chroma.2012.12.029.
  • Krajnc, N. L.; Smrekar, F.; Cerne, J.; Raspor, P.; Modic, M.; Krgovic, D.; Strancar, A.; Podgornik, A. Purification of Large Plasmids with Methacrylate Monolithic Columns. J. Sep. Sci. 2009, 32, 2682–2690. DOI: 10.1002/jssc.200900260.
  • Bicho, D.; Sousa, A.; Sousa, F.; Queiroz, J.; Tomaz, C. T. Effect of Chromatographic Conditions and Plasmid DNA Size on the Dynamic Binding Capacity of a Monolithic Support. J. Sep. Sci. 2014, 37, 2284–2292. DOI: 10.1002/jssc.201400127.
  • Racki, N.; Kramberger, P.; Steyer, A.; Gaspersic, J.; Strancar, A.; Ravnikar, M.; Gutierrez-Aguirre, I. Methacrylate Monolith Chromatography as a Tool for Waterborne Virus Removal. J. Chromatogr. A. 2015, 1381, 118–124. DOI: 10.1016/j.chroma.2015.01.003.
  • Gerster, P.; Kopecky, E.-M.; Hammerschmidt, N.; Klausberger, M.; Krammer, F.; Grabherr, R.; Mersich, C.; Urbas, L.; Kramberger, P.; Paril, T.; et al. Purification of Infective Baculoviruses by Monoliths. J. Chromatogr. A. 2013, 1290, 36–45. DOI: 10.1016/j.chroma.2013.03.047.
  • Smith, N. W.; Jiang, Z. Developments in the Use and Fabrication of Organic Monolithic Phases for Use with High-Performance Liquid Chromatography and Capillary Electrochromatography. J. Chromatogr. A. 2008, 1184, 416–440. DOI: 10.1016/j.chroma.2007.09.027.
  • Peters, E.C.; Lewandowski, K.; Petro, M.; Svec, F.; Frechet, J.M.J.; Chiral Electrochromatography with a ‘Molded’ Rigid Monolithic Capillary Column. Anal. Commun. 1998 35, 83–86. DOI: 10.1039/a708968f.
  • Lammerhofer, M.; Svec, F.; Frechet, J. M. J.; Lindner, W. Monolithic Stationary Phases for Enantioselective Capillary Electrochromatography. J. Micro. Sep. 2000, 12, 597–602. DOI: 10.1002/1520-667X(2000)12:12<597::AID-MCS1005>3.0.CO;2-6.
  • Lammerhofer, M.; Peters, E. C.; Yu, C.; Svec, F.; Frechet, J. M. J.; Lindner, W. Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality. 1. Optimization of Polymerization Conditions, Porous Properties, and Chemistry of the Stationary Phase. Anal. Chem. 2000, 72, 4614–4622. DOI: 10.1021/ac000322l.
  • Lämmerhofer, M.; Svec, F.; Fréchet, J. M. J.; Lindner, W. Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality. 2. Effect of Chromatographic Conditions on the Chiral Separations. Anal. Chem. 2000, 72, 4623–4628. DOI: 10.1021/ac000323d.
  • Preinerstorfer, B.; Bicker, W.; Lindner, W.; Lammerhofer, M. Development of Reactive Thiol-Modified Monolithic Capillaries and in-Column Surface Functionalization by Radical Addition of a Chromatographic Ligand for Capillary Electrochromatography. J. Chromatogr. A. 2004, 1044, 187–199. DOI: 10.1016/j.chroma.2004.04.078.
  • Preinerstorfer, B.; Lindner, W.; Lammerhofer, M. Polymethacrylate-Type Monoliths Functionalized with Chiral Amino Phosphonic Acid-Derived Strong Cation Exchange Moieties for Enantioselective Nonaqueous Capillary Electrochromatography and Investigation of the Chemical Composition of the Monolithic Polymer. Electrophoresis. 2005, 26, 2005–2018. DOI: 10.1002/elps.200410380.
  • Messina, A.; Flieger, M.; Bachechi, F.; Sinibaldi, M. Enantioseparation of 2-Aryloxypropionic Acids on Chiral Porous Monolithic Columns by Capillary Electrochromatography: Evaluation of Column Performance and Enantioselectivity. J. Chromatogr. A. 2006, 1120, 69–74. DOI: 10.1016/j.chroma.2005.11.107.
  • Wang, Q.; Sanchez-Lopez, E.; Han, H.; Wu, H.; Zhu, P.; Crommen, J.; Marina, M. L.; Jiang, Z. Separation of N-Derivatized Di- and Tri-Peptide Stereoisomers by Micro-Liquid Chromatography Using a Quinidine-Based Monolithic Column–Analysis of l-Carnosine in Dietary Supplements. J. Chromatogr. A. 2016, 1428, 176–184. DOI: 10.1016/j.chroma.2015.09.016.
  • Guo, J.; Xiao, Y.; Lin, Y.; Crommen, J.; Jiang, Z. Effect of the Crosslinker Type on the Enantioseparation Performance of β-Cyclodextrin Functionalized Monoliths Prepared by the One-Pot Approach. J. Chromatogr. A. 2016, 1467, 288–296. DOI: 10.1016/j.chroma.2016.05.078.
  • Yao, C.; Qi, L.; Qiao, J.; Zhang, H.; Wang, F.; Chen, Y.; Yang, G. High-Performance Affinity Monolith Chromatography for Chiral Separation and Determination of Enzyme Kinetic Constants. Talanta 2010, 82, 1332–1337. DOI: 10.1016/j.talanta.2010.06.041.
  • Pfaunmiller, E. L.; Hartmann, M.; Dupper, C. M.; Soman, S.; Hage, D. S. Optimization of Human Serum Albumin Monoliths for Chiral Separations and High-Performance Affinity Chromatography. J. Chromatogr. A. 2012, 1269, 198–207. DOI: 10.1016/j.chroma.2012.09.009.
  • Aydoğan, C.; Yılmaz, F.; Çimen, D.; Uzun, L.; Denizli, A. Enantioseparation of Aromatic Amino Acids Using CEC Monolith with Novel Chiral Selector, N-Methacryloyl-l-Histidine Methyl Ester. Electrophoresis 2013, 34, 1908–1914. DOI: 10.1002/elps.201200125.
  • Ahmed, M.; Ghanem, A. Enantioselective Nano Liquid Chromatographic Separation of Racemic Pharmaceuticals: A Facile One-Pot in Situ Preparation of Lipase-Based Polymer Monoliths in Capillary Format. Chirality 2014, 26, 754–763. DOI: 10.1002/chir.22290.
  • Ahmed, M.; Yajadda, M. M. A.; Han, Z. J.; Su, D.; Wang, G.; Ostrikov, K. K.; Ghanem, A. Single-Walled Carbon Nanotube-Based Polymer Monoliths for the Enantioselective Nano-Liquid Chromatographic Separation of Racemic Pharmaceuticals. J. Chromatogr. A. 2014, 1360, 100–109. DOI: 10.1016/j.chroma.2014.07.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.