1,154
Views
3
CrossRef citations to date
0
Altmetric
Articles

Nonlinear model of liquid chromatography considering finite rates of adsorption-desorption kinetics and core-shell adsorbents

, ORCID Icon & ORCID Icon
Pages 964-972 | Received 04 Jun 2018, Accepted 02 Sep 2018, Published online: 31 Jan 2019

References

  • Guiochon, G.; Felinger, A.; Shirazi, D.G., Katti, A.M. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed; ELsevier Academic press: New York, 2006.
  • Guiochon, G.; Lin, B. Modeling for Preparative Chromatography; Academic Press: New York, 2003.
  • Ruthven, D.M. Principles of Adsorption and Adsorption Processes; Wiley-Interscience: New York, 1984.
  • Giddings, J.C. Dynamics of Chromatogrpahy. Part I: Principles and theory; Marcel Dekker: New York, 1965.
  • Gu, T.; Truei, Y.-H.; Tsai, G.-J.; Tsao, G.T. Modeling of Gradient Elution in Multicomponent Nonlinear chromatography. Chem. Eng. Sci. 1992, 47, 253–262.
  • Ohkuma, T.; Hara, S. Tail-producing Slow Adsorption-desorption Process in Lquid-solid Chromatography. J. Chromatogr. 1987, 400, 47–63.
  • Horvath, C.G.; Preiss, B.A.; Lipsky, S.R. Fast Liquid Chromatography: An Investigation of Operating Parameters and these Paration of Nucleotides on Pellicular Ion Exchangers. Anal. Chem. 1967, 39, 1422–1428.
  • Kirkland, J.J. Controlled Surface Porosity Supports for High Speed Gas and Liquid Chromatography. Anal. Chem. 1969, 41, 218–220.
  • Kirkland, J.J.; Truszkowski, F.A.; Dilks, C.H.; Engel, G.S. Superficially Porous Silica Microspheres for Fas Thigh-performance Liquid Chromatography of Macromolecules. J. Chromatogr. A 2000, 890, 3–13.
  • Fanigliulo, A.; Cabooter, D.; Bellazzi, G.; Tramarin, D.; Allieri, B., Rottigni, A.; Desmet, G. Comparison of Performance of High Performance Liquid Chromatography Columns Packed With Superficially and Fully Porous 2.5 mm Particles Using Kinetic Plots. J. Sep. Sci. 2010, 33, 3655–3665.
  • Pietrogrande, M.C.; Dondi, F.; Ciogli, A.; Gasparrini, F.; Piccin, A.; Serafini, M. Characterization of New Types of Stationary Phases for Fast and Ultra-fast Liquid Chromatography by Signal Processing Based on AutoCovariance Function: A Case Study of Application to Passiflora Incarnata L. Extract Separations. J. Chromatogr. A 2010, 1217, 4355–4364.
  • Ali, I.; Al-Othman, Z.A.; Al-Záabi, M. Superficially Porous Particles Columns for Super Fast HPLC Separations. Biomed. Chromatogr. 2012, 26, 1001–1008.
  • Kaczmarski, K.; Guiochon, G. Modeling of the Mass-transfer Kinetics in Chromatographic Columns Packed with Shell and Pellicular Particles. Anal. Chem. 2007, 79, 4648–4656.
  • Li, P.; Yu, J.; Xiu, G.; Rodrigues, A.E. A Strategy for Tail or Eddesign of Efficient and Low-pressure Drop Packed Column Chromatography. AIChE J. 2010, 56, 3091–3098.
  • Gu, T.; Liu, M.; Cheng, K.-S.C.; Ramaswamy, S.; Wang, C. A General Rate Model Approach for the Optimization of the Core Radius Fraction for Multicomponent Isocratic Elution in Preparative Nonlinear Liquid Chromatography Using Cored Beads. Chem. Eng. Sci. 2011, 66, 3531–3539.
  • Lomsadze, K.; Jibuti, G.; Farkas, T.; Chankvetadze, B. Comparative High-performance Liquid Chromatography Enantioseparations on Polysaccharide Based Chiral Stationary Phases Prepared by Coating Totally Porous and Core-shell Silica Particles. J. Chromatogr. A. 2012, 1234, 50–55.
  • Lambert, N.; Kiss, I.; Felinger, A. Significance and Estimation of Chromatographic Parameters. J. Chromatogr. A. 2014, 1366, 84–91.
  • Kurdi, S.E.; Musuleq, D.A.; Alhazmi, H.A.; Bratty, M.A., Deeb, S.E. Comparing Monolithic and Fused Core HPLC Columns for Fast Chromatographic Analysis of Fat-soluble Vitamins. Acta Pharm. 2017, 67, 203–213.
  • Ibrahim, A.E.; Hashem, H.; Elhenawee, M.; Saleh, H. Comparison Between Core-shell and Totally Porous Particle Stationary Phases for Fast and Green LC Determination of Five Hepatitis-C Antiviral Drugs. J. Sep. Sci. 2018, 41, 1734–1742.
  • Gritti, F.; Cavazzini, A.; Marchetti, N.; Guiochon, G. Comparison Between the Efficiencies of Columns Packed with Fully and Partially Porous C18-bonded Silica Materials. J. Chromatogr. A. 2007, 1157, 289–303.
  • Fekete, S.; Oláh, E.; Fekete, J. Fast Liquid Chromatography: The Domination of Core-shell and Very Fine Particles. J. Chromatogr. A 2012, 1228, 57–71.
  • Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. Core-shell Particles: Preparation, Fundamentals and Applications in High Performance Liquid Chromatography. J. Chromatogr. A 2014, 1357, 36–52.
  • González-Ruiz, V.; Olives, A.I.; Martín, M.A. Core-shell Particles Lead the Way to Renewing High-performance Liquid Chromatography. Trend Anal. Chem. 2015, 64, 17–28.
  • Qamar, S.; Sattar, F.A.; Abbasi, J.N.; Seidel-Morgenstern, A. Numerical Simulation of Nonlinear Chromatography with Core-shell Particles Applying the General Rate Model. Chem. Eng. Sci. 2016, 147, 54–64.
  • Javeed, S.; Qamar, S.; Seidel-Morgenstern, A.; Warnecke, G. Efficient and Accurate Numerical Simulation of Nonlinear Chromatographic Processes. J. Comput. Chem. Eng. 2011, 35, 2294–2305.
  • Horváth, K.; Felinger, A. Influence of Particle Size and Shell Thickness of Core-shell Packing Materials on Optimum Experimental Conditions in Preparative Chromatography. J. Chromatogr. A 2015, 1407, 100–105.
  • Debets, H.J.G.; Bajema, B.L.; Doornbos, D.A. A Critical Evlaution of Quality Criteria for the Optimization of Chromatogrpahic Multicomponent Separations. Andytica. Chimica. Acta 1983, 151, 131–141.
  • Cockburn, B.; Shu., C.-W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method For Conservation Laws II. General Framework. Math. Comput. 1989, 52, 411–435.