132
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of histidine-containing dipeptides in twelve marine organisms and four land animal meats by hydrophilic interaction liquid chromatography with ultraviolet detection

, , , & ORCID Icon
Pages 849-854 | Received 16 Jul 2018, Accepted 18 Sep 2018, Published online: 20 Nov 2018

References

  • Abe, H. Role of Histidine-Related Compounds as Intracellular Proton Buffering Constituents in Vertebrate Muscle. Biochem. (Mosc.) 2000, 65, 757–765. http://www.protein.bio.msu.ru/biokhimiya/contents/v65/full/65070891.html. (accessed Jul 10, 2018).
  • Wolff, W.-A.; Wilson, D.-W. Carnosine and Anserine in Mammalian Skeletal Muscle. J. Biol. Chem. 1935, 109, 565–571. http://www.jbc.org/content/109/2/565.short (accessed Jul 10, 2018).
  • Jozanović, M.; Sakač, N.; Sak-Bosnar, M.; Carrilho, E. A Simple and Reliable New Microchip Electrophoresis Method for Fast Measurements of Imidazole Dipeptides in Meat from Different Animal Species. Anal. Bioanal. Chem. 2018, 410, 4359–4369. DOI: 10.1007/s00216-018-1087-6.
  • Kwon, H.-N.; Choi, C.-B. Comparison of Free Amino Acids, Anserine, and Carnosine Contents of Beef according to the Country of Origin and Marbling Score. J. Kor. Soc. Food Sci. Nutr. 2018, 47, 357–362. DOI: 10.3746/jkfn.2018.47.3.357.
  • Abe, H. Distribution of Free L-Histidine and Its Related Compounds in Marine Fishes. Bull. Japan. Soc. Sci. Fish. 1983, 49, 1683–1687. DOI: 10.2331/suisan.49.1683.
  • Farvin, K.-H.-S.; Andersen, L.-L.; Otte, J.; Nielsen, H.-H.; Jessen, F.; Jacobsen, C. Antioxidant Activity of Cod (Gadus morhua) Protein Hydrolysates: Fractionation and Characterisation of Peptide Fractions. Food Chem. 2016, 204, 409–419. DOI: 10.1016/j.foodchem.2016.02.145.
  • Shirai, T.; Fuke, S.; Yamaguchi, K.; Konosu, S. Studies on Extractive Components of Salmonids-II. Comparison of Amino Acids and Related Compounds in the Muscle Extracts of Four Species of Salmon. Comp. Biochem. Physiol. B. 1983, 74, 685–689. DOI: 10.1016/0305-0491(83)90128-1.
  • Abe, H. Histidine-Related Dipeptides: Distribution, Metabolism, and Physiological Function. In Biochemistry and Molecular Biology of Fishes; Hochachka, P.-W., Mommsen, T.-P., Eds.; NED: Elsevier: Amsterdam, 1995.; Vol. 4, pp 309–333.
  • Crush, K.-G. Carnosine and Related Substances in Animal Tissues. Comp. Biochem. Physiol. 1970, 34, 3–30. DOI: 10.1016/0010-406X(70)90049-6.
  • Suyama, M.; Suzuki, T.; Maruyama, M.; Saito, K. Determination of Carnosine, Anserine, and Balenine in the Muscle of Animal. Bull. Japan. Soc. Sci. Fish. 1970, 36, 1048–1053. DOI: 10.2331/suisan.36.1048.
  • Perrone, D.; Monteiro, M.; Castelo-Branco, V.-N. The Chemistry of Imidazole Dipeptides. In Food and Nutritional Components in Focus, Vol. 8: Imidazole Dipeptides Chemistry, Analysis, Function and Effects; Preedy, V.-R., Ed.; The Royal Society of Chemistry: London, 2015; pp 43–60.
  • Abe, H.; Dobson, G.-P.; Hoeger, U.; Parkhouse, W.-S. Role of Histidine-Related Compounds to Intracellular Buffering in Fish Skeletal Muscle. Am. J. Physiol. 1985, 249, 449–454. DOI: 10.1152/ajpregu.1985.249.4.R449.
  • Davey, C.-L. The Significance of Carnosine and Anserine in Striated Skeletal Muscle. Arch. Biochem. Biophys. 1960, 89, 303–308. DOI: 10.1016/0003-9861(60)90059-X.
  • Varanoske, A.-N.; Hoffman, J.-R.; Church, D.-D.; Wang, R.; Baker, K.-M.; Dodd, S.-J.; Coker, N.-A.; Oliveira, L.-P.; Dawson, V.-L.; Fukuda, D.-H.; et al. Influence of Skeletal Muscle Carnosine Content on Fatigue during Repeated Resistance Exercise in Recreationally Active Women. Nutrients 2017, 9, 1–14. DOI: 10.3390/nu9090988.
  • D'Astous-Pagé, J.; Gariépy, C.; Blouin, R.; Cliché, S.; Méthot, S.; Sullivan, B.; Fortin, F.; Palin, M.-F. Identification of Single Nucleotide Polymorphisms in Carnosine-Related Genes and Effects of Genotypes on Pork Meat Quality Attributes. Meat Sci. 2017, 134, 54–60. DOI: 10.1016/j.meatsci.2017.07.019.
  • Harada, R.; Taguchi, Y.; Urashima, K.; Sato, M.; Ohmori, T.; Morimatsu, F. Enhancement of Swimming Endurance in Mice by Chicken Breast Extract. J. Jpn. Soc. Nutr. Food Sci. 2002, 55, 73–78. DOI: 10.4327/jsnfs.55.73.
  • Saunders, B.; Artioli, G.-G.; Sale, C.; Gualano, B. β-Alanine, muscle carnosine and exercise. In Food and Nutritional Components in Focus, Vol. 8: Imidazole Dipeptides Chemistry, Analysis, Function and Effects; Preedy, V.-R., Ed.; The Royal Society of Chemistry: London, 2015; pp 277–294.
  • Kubomura, D.; Yamada, M.; Masui, A. Tuna Extract Reduces Serum Uric Acid in Gout-Free Subjects with Insignificantly High Serum Uric Acid: A Randomized Controlled Trial. Biomed. Rep. 2016, 5, 254–258. DOI: 10.3892/br.2016.701.
  • Fu, H.; Katsumura, Y.; Lin, M.; Muroya, Y.; Hata, K.; Fujii, K.; Yokoya, A.; Hatano, Y. Free Radical Scavenging and Radioprotective Effects of Carnosine and Anserine. Radiat. Phys. Chem. 2009, 78, 1192–1197. DOI: 10.1016/j.radphyschem.2009.07.023.
  • Hipkiss, A.-R.; Preston, J.-E.; Himswoth, D.-T.-M.; Worthington, V.-C.; Abbot, N.-J. Protective Effects of Carnosine against Malondialdehyde-Induced Toxicity towards Cultured Rat Brain Endothelial Cells. Neurosci. Lett. 1997, 238, 135–138. DOI: 10.1016/S0304-3940(97)00873-2.
  • Liu, Y.; Xu, G.; Sayre, L.-M. Carnosine Inhibits (E)-4-Hydroxy-2-Nonenal-Induced Protein Cross-Linking: structural Characterization of carnosine-HNE Adducts. Chem. Res. Toxicol. 2003, 16, 1589–1597. DOI: 10.1021/tx034160a.
  • Ukeda, H.; Hasegawa, Y.; Harada, Y.; Sawamura, M. Effect of Carnosine and Related Compounds on the Inactivation of Human Cu, Zn-Superoxide Dismutase by Modification of Fructose and Glycolaldehyde. Biosci. Biotechnol. Biochem. 2002, 66, 36–43. DOI: 10.1271/bbb.66.36.
  • Vistoli, G. Carnosine in the Context of Histidine-Containing Dipeptides. In Food and Nutritional Components in Focus, Vol. 8: Imidazole Dipeptides Chemistry, Analysis, Function and Effects; Preedy, V.-R., Ed.; The Royal Society of Chemistry: London, 2015; pp 3–22.
  • Sugino, T.; Yasunaga, G.; Fukuda, M. Effect of Whale Meat Extract on Fatigue Induced by Physical Load and by Daily Activities in Humans. Jpn. Pharmacol. Ther. 2013, 41, 879–893. http://jglobal.jst.go.jp/en/public/20090422/201302245058599627 (accessed Jul 10, 2018).
  • Wada, N.; Yamanaka, S.; Shibato, J.; Rakwal, R.; Hirako, S.; Iizuka, Y.; Kim, H.; Matsumoto, A.; Kimura, A.; Takenoya, F.; et al. Behavioral and Omics Analyses Study on Potential Involvement of Dipeptide Balenine through Supplementation in Diet of Senescence-Accelerated Mouse Prone 8. Genom. Data 2016, 10, 38–50. DOI: 10.1016/j.gdata.2016.09.004.
  • Suzuki, Y.; Ito, O.; Mukai, N.; Takahashi, H.; Takamatsu, K. High Level of Skeletal Muscle Carnosine Contributes to the Latter Half of Exercise Performance During 30-s Maximal Cycle Ergometer Sprinting. Jpn. J. Physiol. 2002, 52, 199–205. DOI: 10.2170/jjphysiol.52.199.
  • Hoffman, J.; Ratamess, N.-A.; Ross, R.; Kang, J.; Magrelli, J.; Neese, K.; Faigenbaum, A.-D.; Wise, J.-A. β-Alanine and the Hormonal Response to Exercise. Int. J. Sports Med. 2008, 29, 952–958. DOI: 10.1055/s-2008-1038678.
  • Ansurudeen, I.; Sunkari, V.-G.; Grunler, J.; Peters, V.; Schmitt, C.-P.; Catrina, S.-B.; Brismar, K.; Forsberg, E.-A. Carnosine Enhances Diabetic Wound Healing in the db/db Mouse Model of Type 2 Diabetes. Amino Acids 2012, 43, 127–134. DOI: 10.1007/s00726-012-1269-z.
  • Gualano, B.; Everaert, I.; Stegen, S.; Artioli, G.-G.; Taes, Y.; Roschel, H.; Achten, E.; Otaduy, M.-C.; Junior, A.-H.; Harris, R.; et al. Reduced Muscle Carnosine Content in Type 2, but Not in Type 1 Diabetic Patients. Amino Acids 2012, 43, 21–24. DOI: 10.1007/s00726-011-1165-y.
  • Tsuji, K.; Sato, A.; Kaneko, H.; Yasunaga, G.; Fujise, Y.; Nomata, H. Comparision of Physiologically Significant Imidazole Dipeptides in Cetaceans Sampled in Japanese Whale Research (Short Paper). Sci. Rep. Hokkaido. Fish. EXP. Stn. 2009, 74, 25–28. https://www.hro.or.jp/list/fisheries/marine/att/74-mokuji.pdf (accessed Jul 10, 2018).
  • Dunnett, M.; Harris, R.-C. Determination of Carnosine and Other Biogenic Imidazoles in Equine Plasma by Isocratic Reversed-Phase Ion-Pair High-Performance Liquid Chromatography. J. Chromatogr. B 1992, 579, 45–53. DOI: 10.1016/0378-4347(92)80361-S.
  • Aristoy, M.-C.; Soler, C.; Toldrá, F. A Simple, Fast and Reliable Methodology for the Analysis of Histidine Dipeptides as Markers of the Presence of Animal Origin Proteins in Feeds for Ruminants. Food Chem. 2004, 84, 485–491. DOI: 10.1016/j.foodchem.2003.07.030.
  • Mora, L.; Sentandreu, M.-A.; Toldrá, F. Hydrophilic Chromatographic Determination of Carnosine, Anserine, Balenine, Creatine, and Creatinine. J. Agric. Food Chem. 2007, 55, 4664–4669. DOI: 10.1021/jf0703809.
  • Ishimaru, M.; Haraoka, M.; Hatate, H.; Tanaka, R. Simultaneous Analysis of Purine and Pyrimidine Compounds Associated with the Freshness and Taste of Marine Foods. Food Anal. Methods 2016, 9, 1606–1615. DOI: 10.1007/s12161-015-0341-1.
  • Lukton, A.; Olcott, H.-S. Content of Free Imidazole Compounds in the Muscle Tissue of Aquatic Animals. J. Food Sci. 1958, 23, 611–618. DOI: 10.1111/j.1365-2621.1958.tb17612.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.