89
Views
7
CrossRef citations to date
0
Altmetric
Articles

Application of planar and column micellar liquid chromatography to the prediction of physicochemical properties and biological activity of compounds

ORCID Icon & ORCID Icon

References

  • Sobańska, A. W. Application of Planar Chromatographic Descriptors to the Prediction of Physicochemical Properties and Biological Activity of Compounds. J. Liq. Chromatogr. Rel. Technol. 2018, 41, 255–271. DOI: 10.1080/10826076.2018.1447886.
  • Ruis-Angel, M. J.; Carda-Broch, S.; Torres-Lapasio, J. R.; Garcia-Alvarez-Coque, M. C. Retention Mechanisms in Micellar Liquid Chromatography. J. Chromatogr. A. 2009, 1216, 1798–1814. DOI: 10.1016/j.chroma.2008.09.053.
  • Sumina, E. G.; Shtykov, S. N.; Tyurina, N. V. Surfactants in Thin-Layer Chromatography. J. Anal. Chem. 2003, 58, 720–730. DOI: 10.1023/A:1025027409149.
  • Hernandez, M. J. M.; Alvarez-Coque, M. C. G. Solute-Mobile Phase and Solute-Stationary Phase Interactions in Micellar Liquid Chromatography. Analyst. 1992, 117, 831–837. DOI: 10.1039/AN9921700831.
  • Marina, M. L.; Garcia, M. A. Evaluation of Distribution Coefficients in Micellar Liquid Chromatography. J. Chromatogr. A. 1997, 780, 103–116. DOI: 10.1016/S0021-9673(97)00329-4.
  • Shtykov, S. N.; Sumina, E. G.; Tyurina, N. V. Calculation of Partition Coefficients of Organic Reagents in Micellar Thin-Layer Chromatography. J. Anal. Chem. 2002, 57, 322–325. DOI: 10.1023/A:1014950314681.
  • Garcia-Alvarez-Coque, M. C.; Torres-Lapasio, J. R.; Baeza-Baeza, J. J. Modelling of Retention Behaviour of Solutes in Micellar Liquid Chromatography. J. Chromatogr. A. 1997, 780, 129–148. DOI: 10.1016/S0021-9673(97)00051-4.
  • Komsta, Ł.; Skibiński, R.; Gowin, E.; Mączka, P. Exploring Hidden Trends in Classic and Micellar Thin-Layer Chromatography Retention of Model Compounds by Chemometric Methods. J. Liq. Chromatogr. Rel. Technol. 2013, 36, 2348–2362. DOI: 10.1080/10826076.2013.789425.
  • Jimenez, O.; Marina, M. L. Retention Modeling in Micellar Liquid Chromatography. J. Chromatogr. A. 1997, 780, 149–163. DOI: 10.1016/S0021-9673(97)00262-8.
  • Armstrong, D. W.; Nome, F. Partitioning Behavior of Solutes Eluted with Micellar Mobile Phases in Liquid Chromatography. Anal. Chem. 1981, 53, 1662–1666. DOI: 10.1021/ac00234a026.
  • Arunyanart, M.; Love, L. J. C. Model for Micellar Effects on Liquid Chromatography Capacity Factors and for Determination of Micelle-Solute Equilibrium Constants. Anal. Chem. 1984, 56, 1557–1561. DOI: 10.1021/ac00273a005.
  • Foley, J. P. Critical Compilation of Solute-Micelle Binding Constants and Related Parameters from Micellar Liquid Chromatographic Measurements. Anal. Chim. Acta. 1990, 231, 237–247. DOI: 10.1016/S0003-2670(00)86422-3.
  • Nishi, H. Pharmaceutical Applications of Micelles in Chromatography and Electrophoresis. J Chromatogr A. 1997, 780, 243–264. DOI: 10.1016/S0021-9673(97)00347-6.
  • Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M. J. Thin Layer Chromatography in Drug Discovery Process. J Chromatogr A. 2017, 1520, 9–22. DOI: 10.1016/j.chroma.2017.09.015.
  • Hartmann, T.; Schmitt, J. Lipophilicity – beyond Octanol/Water: A Short Comparison of Modern Technologies. Drug Discov. Today: Technol. 2004, 1, 431–439. DOI: 10.1016/j.ddtec.2004.10.006.
  • Bate-Smith, E. C.; Westall, R. G. Chromatographic Behaviour and Chemical Structure I. Some Naturally Occurring Phenolic Substances. Biochem. Biophys. Acta. 1950, 4, 427–440. DOI: 10.1016/0006-3002(50)90049-7.
  • Soczewiński, E.; Wachtmeister, C. A. The Relation between the Composition of Certain Ternary Two-Phase Solvent Systems and Rm Values. J. Chromatogr. 1962, 7, 311–320. DOI: 10.1016/S0021-9673(01)86422-0.
  • Komsta, Ł.; Skibiński, R.; Berecka, A.; Gumieniczek, A.; Radkiewicz, B.; Radoń, M. Revesiting Thin-Layer Chromatography as a Lipophilicity Determination Tool – A Comparative Study on Several Techniques with a Model Solute Set. J. Pharm. Biomed. Anal. 2010, 53, 911–918. DOI: 10.1016/j.jpba.2010.06.024.
  • Sobańska, A. W.; Wójcicka, K.; Brzezińska, E. Evaluation of the Lipophilicity of Selected Sunscreens – a Chemometric Analysis of Thin-Layer Chromatographic Retention Data. J. Sep. Sci. 2014, 37, 3074–3081. DOI: 10.1002/jssc.201400535.
  • Szymański, A. Retention Mechanism of Sulfonamides in Micellar Reversed Phase Liquid Chromatography. Ars Sep. Acta. 2011, 8, 69–80. http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BATA-0015-0046
  • Treiner, C.; Kumar Chattopadhyay, A. Correlation of Partition Coefficients for Polar Aromatic and Aliphatic Molecules between Trimethyldodecylammonium Bromide Micelles + Water and Octanol + Water Systems at 298.15 K. J. Colloid Interface Sci. 1986, 109, 101. DOI: 10.1016/0021-9797(86)90285-7.
  • Treiner, C. Partition Coefficients of 20 Polar Molecules between Water and Trimethyldodecylammonium Bromide Micelles: Correlation with the Water + Octanol System. J. Colloid Interface Sci. 1983, 93, 33–42. DOI: 10.1016/0021-9797(83)90381-8.
  • Khaledi, M. G.; Breyer, E. D. Quantitation of Hydrophobicity with Micellar Liquid Chromatography. Anal. Chem. 1989, 61, 1040–1047. DOI: 10.1021/ac00184a025.
  • Marina, M. L.; Garcia, M. A.; Pastor, M.; Vera, S. A Statistical Study of the Correlation between k’ or Logk’ and logPow for a Group of Benzene and Naphthalene Derivatives in Micellar Liquid Chromatography Using a C-18 Column. Chromatographia 1995, 40, 185–192. DOI: 10.1007/BF02272169.
  • Gago, F.; Alvarez-Builla, J.; Elguero, J.; Diez-Masa, J. C. Correlation of Octanol/Water Partition Coefficients with Hydrophobicity Measurements Obtained by Micellar Chromatography. Anal. Chem. 1987, 59, 921–923. DOI: 10.1021/ac00133a029.
  • Lavine, B.; White, A. J.; Han, J. H. Solute Retention in Micellar Liquid Chromatography. J. Chromatogr. A. 1991, 542, 29–40. DOI: 10.1016/S0021-9673(01)88746-X.
  • Gonzales, V.; Rodriguez,-Delgado, M. A.; Sanchez, M. J.; Garcia-Montelongo, F. Solute-Micelle Association Constants and Correlations of Octanol-Water Coefficients with Hydrophobicity for Polycyclic Aromatic Hydrocarbons by Micellar Chromatography. Chromatographia 1992, 34, 627–635. DOI: 10.1007/BF02269875.
  • Medina-Hernandez, M. J.; Sagrado, S. Chromatographic Quantification of Hydrophobicity Using Micellar Mobile Phases. J. Chromatogr. A. 1995, 718, 273–282. DOI: 10.1016/0021-9673(95)00678-8.
  • Belena-Pozo, I.; Villanueva-Camanas, R. M.; Sagrado, S.; Medina-Hernandez, M. J. Development and Validation of a Procedure for Estimating the Hydrophobicity of Structurally Unrelated Compounds by Micellar Liquid Chromatography. J. Chromatogr. Sci. 1999, 37, 375–382. DOI: 10.1093/chrsci/37.10.375.
  • Sanchis Mallols, J. M.; Villanueva Camanas, R. M.; Sagrado, S.; Medina-Hernandez, M. J. Quantitative Retention-Structure and Retention-Activity Relationship Studies of Ionic and Non-Ionic Catecholamines by Micellar Liquid Chromatography. Chromatographia 1997, 46, 605–612. DOI: 10.1007/BF02490520.
  • Ruiz-Angel, M. J.; Carda-Broch, S.; Garcı́a-Alvarez-Coque, M. C.;.; Berthod, A. Micellar versus Hydro-Organic Mobile Phases for Retention-Hydrophobicity Relationship Studies with Ionizable Diuretics and an Anionic Surfactant. J. Chromatogr. A. 2004, 1030, 279–288. DOI: 10.1016/j.chroma.2003.10.097.
  • Strasters, J. K.; Breyer, E. D.; Rodgers, A. H.; Khaledi, M. G. Simultaneous Optimization of Variables Influencing Selectivity and Elution Strength in Micellar Liquid Chromatography: Effect of Organic Modifier and Micelle Concentration. J. Chromatogr. A 1990, 511, 17–33. DOI: 10.1016/S0021-9673(01)93267-4.
  • Kawczyk, P.; Vander Heyden, Y.; Nasal, A.; Bączek, T.; Drabczyńska, A.; Kieć-Kononowicz, K.; Kaliszan, R. Micellar Liquid Chromatography for Lipophilicity Determination of New Biologically Active 1,3-Purinodiones. J. Sep. Sci. 2010, 33, 1546–1557. DOI: 10.1002/jssc.200900752.
  • Janicka, M.; Pietras-Ożga, D. Chromatographic Evaluation of the Lipophilicity of N-Phenyltrichloroacetamide Derivatives Using Micellar TLC and OPLC. J. Planar Chromatogr. 2010, 23, 396–399. DOI: 10.1556/JPC.23.2010.6.2.
  • Janicka, M.; Stępnik, K.; Pachuta-Stec, A. Quantification of Lipophilicity of 1,2,4-Triazoles Using Micellar Chromatography. Chromatographia 2012, 75, 449–456. DOI: 10.1007/s10337-012-2227-3.
  • Janicka, M.; Stępnik, K.; Pachuta-Stec, A. A Comparative Study of the Lipophilicity of 1,2,4-Triazoles by Reversed-Phase and Micellar TLC and OPLC. J. Planar Chromatogr. 2013, 26, 153–159. DOI: 10.1556/JPC.26.2013.2.9.
  • Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Nowakowska, J. The Comparative Study of Micellar TLC and RP-TLC as Potential Tools for Lipophilicity Assessment Based on QSRR Approach. J. Pharm. Biomed. Anal. 2018, 149, 70–79. DOI: 10.1016/j.jpba.2017.10.034.
  • Waters, L. J.; Kasprzyk-Hordern, B. Micellar Chromatographic Determination of Partition Coefficients and Associated Thermodynamic Data for Pharmaceutical Compounds. J. Therm. Anal. Calorim. 2010, 102, 343–347. DOI: 10.1007/s10973-010-0994-3.
  • Waters, L. J.; Shahzad, Y.; Mitchell, J. C. pH Effects inMicellar Liquid Chromatographic Analysis for Determining Partition Coefficients for a Series of Pharmaceutically Related Compounds. CPA. 2012, 8, 272–277. DOI: 10.2174/157341212801619379.
  • Escuder-Gilabert, L.; Martinez-Pla, J. J.; Sagrado, S.; Villanueva, R. M.; Medina-Hernandez, M. J. Biopartitioning Micellar Separation Methods: modelling Drug Absorption. J. Chromatogr. A. 2003, 797, 21–35. DOI: 10.1016/S1570-0232(03)00606-8.
  • Molero-Monfort, M.; Martı́n-Biosca, Y.; Sagrado, S.; Villanueva-Camañas, R. M.;.; Medina-Hernández, M. J. Micellar Liquid Chromatography for Prediction of Drug Transport. J. Chromatogr. A. 2000, 870, 1–11. DOI: 10.1016/S0021-9673(99)01067-5.
  • Detroyer, A.; Stokbroekx, S.; Bohets, H.; Lorreyne, W.; Timmerman, P.; Verboven, P.; Massart, D. L.; Vander Heyden, Y. Fast Monolithic Micellar Liquid Chromatographt: An Alternative Drug Peremeability Assessing Method for High-Throughput Screening. Anal. Chem. 2004, 76, 7304–7309. DOI: 10.1021/ac048944k.
  • Molero-Monfort, M.; Escuder-Gilabert, L.; Villanueva-Camanas, R. M.; Sagrado, S.; Medina-Hernandez, M. J. Biopartitioning Micellar Chromatography: An In Vitro Technique for Predicting Human Drug Absorption. J. Chromatogr. B. 2001, 753, 225–236. DOI: 10.1016/S0378-4347(00)00546-6.
  • Dobricic, V.; Savic, J.; Nikolic, K.; Vladimirov, S.; Vujic, Z.; Brboric, J. Application of Biopartitioning Micellar Chromatograpy and QSRR Modeling for Predcition of Gastrointestinal Absorption and Design of Novel β-Hydroxy- β-Arylalkanoic Acids. Eur. J. Pharm. Sci. 2017, 100, 280–284. DOI: 10.1016/j.ejps.2017.01.023.
  • Stępnik, K. E.; Malinowska, I.; Rój, E. In Vitro and in Silico Determination of Oral, Jejunum and Caco-2 Human Absorption of Fatty Acids and Polyphenols. Micellar Liquidchromatography. Talanta 2014, 130, 265–273. DOI: 10.1016/j.talanta.2014.06.039.
  • Waters, L. J.; Shokry, D. S.; Parkes, G. M. B. Predicting Human Intestinal Absorption in the Presence of Bile Salt with Micellar Liquid Chromatography. Biomed. Chromatogr. 2016, 30, 1618–1624. DOI: 10.1002/bmc.3731.
  • Martinez-Pla, J. J.; Martin-Biosca, Y.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hrnandez, M. J. Biopartitioning Micellar Liquid Chromatography to Predict Skin Permeability. Biomed. Chromatogr. 2003, 17, 530–537. DOI: 10.1002/bmc.281.
  • Martinez-Pla, J. J.; Martin-Biosca, Y.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Evaluation of the pH Effect of Formulations on the Skin Permeability of Drugs by Biopartitioning Micellar Chromatography. J. Chromatogr. A. 2004, 1047, 255–262. DOI: 10.1016/j.chroma.2004.07.011.
  • Martin-Biosca, Y.; Molero-Monfort, M.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Rapid in Vitro Test to Predict Ocular Tissue Peremebility Based on Biopartitioning Micellar Chromatography. Eur. J. Phar. Sci. 2003, 20, 209–216.
  • Kai, J.; Nakamura, K.; Masuda, T.; Ueda, I.; Fujiwara, H. Thermodynamic Aspects of Hydrophobicity and the Blood-Barrier Permeability Studies with a Gel Filtration Chromatography. J. Med. Chem. 1996, 39, 2621–2624. DOI: 10.1021/jm960068i.
  • Escuder-Gilabert, L.; Molero-Monfort, M.; Villanueva, Camanas, R. M.; Sagrado, S.; Medina-Hernandez, M. J. Potential of Biopartitioning Micellar Chromatography as an in Vitro Technique for Prediciting Drug Penetration across the Blood-Brain Barrier. J. Chromatogr. B. 2004, 807, 193–201. DOI: 10.1016/j.jchromb.2004.04.004.
  • Stępniak, K.; Malinowska, I. The Use of Biopartitioning Micellar Chromatography and Immobilized Artificial Membrane Column for in Silico and in Vitro Determination of Blood-Brain Barrier Penetration of Phenols. J. Chromatogr. A. 2013, 1286, 127–136. DOI: 10.1016/j.chroma.2013.02.071.
  • De Vrieze, M.; Lynen, F.; Chen, K.; Szucs, R.; Sandra, P. Predicting Drug Penetration Across the Blood-Brain Barrier: Comparison of Micellar Liquid Chromatography and Immobilized Artificial Membrane Chromatography. Anal. Bioanal. Chem. 2013, 405, 6029–6041. DOI: 10.1007/s00216-013-7015-x.
  • Lu, R.; Sun, J.; Wang, Y.; Li, H.; Liu, J.; Fang, L.; He, Z. Characterization of Biopartitioning Micellar Chromatography System Using Monolithic Column by Linear Solvation Energy Relationship and Application to Predict Blood-Brain Penetration. J. Chromatogr. A. 2009, 1216, 5190–5198. DOI: 10.1016/j.chroma.2009.05.007.
  • Martin-Biosca, Y.; Torres-Cartas, S.; Villanueva-Camanas, R. M.; Sagrado, S.; Medina-Hernandez, M. J. Biopartitioning Micellar Chromatography to Predict Blood to Lung, Blood to Liver, Blood to Fat and Blood to Skin Partitioning Coefficients of Drugs. Anal. Chim. Acta. 2009, 632, 296–303. DOI: 10.1016/j.aca.2008.11.004.
  • Breyer, E. D.; Strasters, J. K.; Khaledi, M. G. Quantitative Retention-Biological Activity Relationship Study by Micellar Liquid Chromatography. Anal. Chem. 1991, 63, 828–833. DOI: 10.1021/ac00008a019.
  • Cuenca-Benito, M.; Sagrado, S.; Villanueva, R. M.; Medina-Hernandez, M. J. Quantitative Retention-Structure and Retention-Activity Relationships of Barbiturates by Micellar Liquid Chromatography. J. Chromatogr. A. 1998, 814, 121–132. DOI: 10.1016/S0021-9673(98)00375-6.
  • Escuder-Gilabert, L.; Sagrado, S.; Villanueva, R. M.; Medina-Hernandez, M. J. Quantitative Retention-Structure and Retention-Activity Relationship Studies of Local Anesthetics by Micellar Liquid Chromatography. Anal. Chem. 1998, 70, 28–34. DOI: 10.1021/ac970464o.
  • Quinones-Torrelo, C.; Sagrado, S.; Villanueva-Camans, R. M.; Medina-Hernandez, M. J. Development of Predictive Retention-Activity Relationship Models of Tricyclic Antidepressants by Micellar Liquid Chromatography. J. Med. Chem. 1999, 42, 3154–3162. DOI: 10.1021/jm9910369.
  • Moler-Monfort, M.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Retention-Activity Relationship Studies of Benzophenones by Micellar Liquid Chromatography. Biomed. Chromatogr. 1999, 13, 394–400. DOI: 10.1002/(SICI)1099-0801(199910)13:6<394::AID-BMC898>3.0.CO;2-0.
  • Martin-Biosca, Y.; Molero-Monfort, M.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Development of Predictive Retention-Activity Relationship Models of Antipsychotic Drugs by Micellar Liquid Chromatography. Biomed. Chromatogr. 1999, 13, 478–492. DOI: 10.1002/(SICI)1099-0801(199911)13:7<478::AID-BMC916>3.0.CO;2-V.
  • Escuder-Gilabert, L.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Development of Predicitive Retention-Activity Relationship Models of Non-Steroidal anti-Inflammatory Drugs by Micellar Liquid Chromatography: comparison with Immobilized Artificial Membrane Columns. J. Chromatogr. B. 2000, 740, 59–70. DOI: 10.1016/S0378-4347(00)00021-9.
  • Martin-Biosca, Y.; Molero-Monfort, M.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Development of Predictive Retention-Activity Relationship Models of Barbiturates by Micellar Liquid Chromatography. Quant. Struct-Act. Relat. 2000, 19, 247–256. DOI: 10.1002/1521-3838(200006)19:3<247::AID-QSAR247>3.0.CO;2-6.
  • Martinez-Pla, J. J.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Retention-Property Relationship of Anticonvulsant Drugs by Biopartitioning Micellar Chromatography. J. Chromatogr. B. 2001, 757, 89–99. DOI: 10.1016/S0378-4347(01)00124-4.
  • Martin-Biosca, Y.; Molero-Monfort, M.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Development of Predictive Retention-Activity Relationship Models of Butyrphenones by Micellar Liquid Chromatography. Biomed. Chromatogr. 2001, 15, 334–341. DOI: 10.1002/bmc.77.
  • Quinones-Torrelo, C.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernadez, M. J. Retention Pharmacokinetic and Pharmacodynamic Parameter Telationship of Antihistamine Drugs Using Biopartitioning Micellar Chromatography. J. Chromatogr. B. 2001, 761, 13–26. DOI: 10.1016/S0378-4347(01)00294-8.
  • Quinonez-Torrelo, C.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Opioid Analgetics Retention-Pharmacologic Activity Models Using Biopartitioning Micellar Chromatography. J. Chromatogr. B. 2002, 766, 265–277. DOI: 10.1016/S0378-4347(01)00505-9.
  • Quinonez-Torrelo, C.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Role of Hydrophobicity on the Monoamine Receptor Binding Affinities of Central Nervous System Drugs: A Quantitative Retention-Activity Relationships Analysis Using Biopartitioning Micellar Chromatography. J. Chromatogr. B. 2004, 801, 185–198. DOI: 10.1016/j.jchromb.2003.11.008.
  • Wang, S.; Yang, G.; Zhang, H.; Liu, H.; Li, Z. QRAR Models for Cardiovascular Systems Using Biopratitioning Micellar Chromatography. J. Chromatogr. B. 2007, 846, 329–333. DOI: 10.1016/j.jchromb.2006.08.027.
  • Wu, L. P.; Chen, C.; Sun, C. J.; Ye, L. M. QRAR Models for Diuretics Using Mixed Micellar Liquid Chromatography. J. Bioequiv. Availab. 2011, 3, 169–173. DOI: 10.4172/jbb.1000079.
  • Quinones-Torrelo, C.; Sagrado-Vives, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. An LD50 Model for Predicting Psychotropic Drug Toxicity Using Biopartitioning Micellar Chromatography. Biomed. Chromatogr. 2001, 15, 31–40. DOI: 10.1002/bmc.24.
  • Hadjmohhamadi, M.; Salary, M. Biopartitioning Micellar Chromatography with Sodium Dodecyl Sulfate as a Pseudo α1-Glycoprotein to the Prediction of Protein-Drug Binding. J. Chromatogr 2013, 912, 50–55. DOI: 10.1016/j.jchromb.2012.11.020.
  • Ciura, K.; Nowakowska, J.; Kawczak, P.; Greber, K. E.; Markuszewski, M. J. Quantitative Structure-Retention Relationships and Quantitative Structure-Activity Relationships Study of Macrolide Antibiotics on Micellar Thin Layer Chromatography. Acta Pol. Pharm.- Drug Res. 2017, 74, 1365–1372. http://ptfarm.pl/download/8,7,14,21,7,7
  • Martin-Biosca, Y.; Escuder-Gilabert, L.; Marina, M. L.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. Quantitative Retention and Migration-Toxicity Relationships of Phenoxy Acid Herbicides in Micellar Liquid Chromatography and Micellar Electrokinetic Chromatography. Anal. Chim. Acta. 2001, 443, 191–203. DOI: 10.1016/S0003-2670(01)01208-9.
  • Bermudez-Saldana, J. M.; Escuder-Gilabert, L.; Medina-Hernandez, M. J.; Villanueva-Camanas, R. M.; Sagrado, S. Cromatographic Evaluation of the Toxicity in Fish of Pesticides. J. Chromatogr. B. 2005, 814, 115–125. DOI: 10.1016/j.jchromb.2004.10.007.
  • Escuder-Gilabert, L.; Martı́n-Biosca, Y.; Sagrado, S.; Villanueva-Camañas, R. M.;.; Medina-Hernández, M. J. Biopartitioning Micellar Chromatography to Predict Ecotoxicity. Anal. Chim. Acta. 2001, 448, 173–185. DOI: 10.1016/S0003-2670(01)01320-4.
  • Bermudez-Saldana, J. M.; Escuder-Gilabert, L.; Medina-Hernandez, M. J.; Villanueva-Camanas, R. M.; Sagrado, S. Biopartitioning Micellar Chromatography: An Alternative High-Throughput Method for Assessing the Ecotoxicity of Anilines and Phenols. J. Chromatogr. B. 2007, 852, 353–361. DOI: 10.1016/j.jchromb.2007.01.041.
  • Bermudez-Saldana, J. M.; Escuder-Gilabert, L.; Medina-Hernandez, M. J.; Villanueva-Camanas, R. M.; Sagrado, S. Modelling Bioconcentration of Pesticides in Fish Using Biopartitioning Micellar Chromatography. J. Chromatogr. A. 2005, 1063, 153–160. DOI: 10.1016/j.chroma.2004.11.074.
  • El-Shaheny, R. N.; Rl-Maghrabey, M. H.; Belal, F. F. Micellar Liquid Chromatography from Green Analysis Perspective. Open Chem. 2015, 13, 877–892. DOI: 10.1515/chem-2015-0101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.