113
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Chromatographic descriptors in QSAR study of barbiturates

, , , &
Pages 194-203 | Received 21 Jan 2019, Accepted 01 Mar 2019, Published online: 15 Apr 2019

References

  • Vetulani, J. Drug Addiction. Part I. Psychoactive Substances in the past and Presence. Pol. J. Pharmacol. 2001, 53, 201–214.
  • Botello, I.; Borrull, F.; Calull, M.; Aguilar, C. Electrokinetic Supercharging in CE for the Separation and Preconcentration of Barbiturate Drugs in Urine Samples. J. Sep. Sci. 2013, 36, 524–531. DOI: 10.1002/jssc.201200690.
  • Muroi, Y.; Theusch, C. M.; Czajkowski, C.; Jackson, M. B. Distinct Structural Changes in the GABA a Receptor Elicited by Pentobarbital and GABA. Biophys. J. 2009, 96, 499–509. DOI: 10.1016/j.bpj.2008.09.037.
  • Sonnay, S.; Duarte, J. M. N.; Just, N.; Gruetter, R. Energy Metabolism in the Rat Cortex under Thiopental Anaesthesia Measured in Vivo by 13C MRS. J. Neurosci. Res. 2017, 95, 2297–2306. DOI: 10.1002/jnr.24032.
  • Aboul-Enein, M. N.; El-Azzouny, A. A.; Saleh, O. A.; Maklad, Y. A. On Chemical Structures with Potent Antiepileptic/Anticonvulsant Profile. Mini-Rev. Med. Chem 2012, 12, 671–700. DOI: 10.2174/138955712800626665.
  • Xu, C.; Wyman, A. R.; Alaamery, M. A.; Argueta, S. A.; Ivey, F. D.; Meyers, J. A.; Lerner, A.; Burdo, T. H.; Connolly, T.; Hoffman, C. S.; Chiles, T. C. Anti-Inflammatory Effects of Novel Barbituric Acid Derivatives in T Lymphocytes. Int. Immunopharmacol. 2016, 38, 223–232. DOI: 10.1016/j.intimp.2016.06.004.
  • Barakat, A.; Al-Majid, A. M.; Soliman, S. M.; Islam, M. S.; Ghawas, H. M.; Yousuf, S.; Choudhary, M. I.; Wadood, A. Monoalkylated Barbiturate Derivatives: X-Ray Crystal Structure, Theoretical Studies, and Biological Activities. J. Mol. Struct. 2017, 1141, 624–633. DOI: 10.1016/j.molstruc.2017.04.017.
  • Giziroglu, E.; Sarikurkcu, C.; Aygün, M.; Basbulbul, G.; Soyleyici, H. C.; Firinci, E.; Kirkan, B.; Alkis, A.; Saylica, T.; Biyik, H. Barbiturate Bearing Aroylhydrazine Derivatives: Synthesis, NMR Investigations, Single Crystal X-Ray Studies and Biological Activity. J. Mol. Struct. 2016, 1108, 325–333. DOI: 10.1016/j.molstruc.2015.12.036.
  • Penthala, N. R.; Ketkar, A.; Sekhar, K. R.; Freeman, M. L.; Eoff, R. L.; Balusu, R.; Crooks, P. A. 1-Benzyl-2-Methyl-3-Indolylmethylene Barbituric Acid Derivatives: Anti-Cancer Agents That Target Nucleophosmin 1 (NPM1). Bioorg. Med. Chem. 2015, 23, 7226–7233. DOI: 10.1016/j.bmc.2015.10.019.
  • Chen, Z.; Cai, D.; Mou, D.; Yan, Q.; Sun, Y.; Pan, W.; Wan, Y.; Song, H.; Yi, W. Design, Synthesis and Biological Evaluation of Hydroxy- or Methoxy-Substituted 5-Benzylidene(Thio) Barbiturates as Novel Tyrosinase Inhibitors. Bioorg. Med. Chem. 2014, 22, 3279–3284. DOI: 10.1016/j.bmc.2014.04.060.
  • Dgachi, Y.; Martin, H.; Bonet, A.; Chioua, M.; Iriepa, I.; Moraleda, I.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L. Synthesis and Biological Assessment of Racemic Benzochromenopyrimidinetriones as Promising Agents for Alzheimer's Disease Therapy. Future Med. Chem. 2017, 9, 715–721. DOI: 10.4155/fmc-2017-0004.
  • Ikeda, A.; Tanaka, Y.; Nobusawa, K.; Kikuchi, J. I. Solubilization of Single-Walled Carbon Nanotubes by Supramolecular Complexes of Barbituric Acid and Triaminopyrimidines. Langmuir 2007, 23, 10913–10915. DOI: 10.1021/la702747r.
  • Nagelhout, J. J.; Plaus, K. Nurse Anesthesia, 4th ed.; Saunders Elsevier: Missouri, 2009.
  • Kier, L. B.; Hall, L. H.; Frazer, J. W. Design of Molecules from Quantitative Structure-Activity Relationship Models. 1. Information Transfer between Path and Vertex Degree Counts. J. Chem. Inf. Model. 1993, 33, 143–147. DOI: 10.1021/ci00011a021.
  • Hansch, C. A Quantitative Approach to Biochemical Structure-Activity Relationships. Acc. Chem. Res. 1969, 2, 232–239. DOI: 10.1021/ar50020a002.
  • Naşcu-Briciu, R. D.; Sârbu, C. A Comparative Study concerning the Chromatographic Behaviour and Lipophilicity of Certain Natural Toxins. J. Sep. Sci. 2012, 35, 1059–1067. DOI: 10.1002/jssc.201200050.
  • Kerns, E. H.; Di, L. Pharmaceutical Profiling in Drug Discovery. Drug Discov. Today 2003, 8, 316–323. DOI: 10.1016/S1359-6446(03)02649-7.
  • Kalász, H.; Benkő, B.; Gulyás, Z.; Tekes, K. Lipophilicity Determination Using Both TLC and Calculations. J. Liq. Chromatogr. Relat. Technol 2009, 32, 1342–1358. DOI: 10.1080/10826070902854466.
  • Héberger, K. Quantitative Structure-(Chromatographic) Retention Relationships. J. Chromatogr. A 2007, 1158, 273–305. DOI: 10.1016/j.chroma.2007.03.108.
  • Vastag, G.; Apostolov, S.; Matijević, B.; Assaleh, F. QSRR Approach in Examining Selected Azo Dyes. J. Liq. Chromatogr. Relat. Technol 2016, 39, 674–681. DOI: 10.1080/10826076.2016.1230748.
  • Tamaian, R.; Moţ, A.; Silaghi-Dumitrescu, R.; Ionuţ, I.; Stana, A.; Oniga, O.; Nastasə, C.; Benedec, D.; Tiperciuc, B.; McPhee, D. J. Study of the Relationships between the Structure, Lipophilicity and Biological Activity of Some Thiazolyl-Carbonyl-Thiosemicarbazides and Thiazolyl-Azoles. Molecules 2015, 20, 22188–22201. DOI: 10.3390/molecules201219841.
  • Sobańska, A. W. Application of Planar Chromatographic Descriptors to the Prediction of Physicochemical Properties and Biological Activity of Compounds. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 255–271. DOI: 10.1080/10826076.2018.1447886.
  • Milojković-Opsenica, D.; Andrić, F.; Šegan, S.; Trifković, J.; Tešić, Ž. Thin-Layer Chromatography in Quantitative Structure-Activity Relationship Studies. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 272–281. DOI: 10.1080/10826076.2018.1447892.
  • Kepczýska, E.; Bojarski, J.; Pyka, A. Lipophilicity of Barbiturates Determined by TLC. J. Liq. Chromatogr. Relat. Technol 2003, 26, 3277–3287. DOI: 10.1081/JLC-120025523.
  • Cuenca-Benito, M.; Sagrado, S.; Villanueva-Camañas, R. M.; Medina-Hernández, M. J. Quantitative Retention-Structure and Retention-Activity Relationships of Barbiturates by Micellar Liquid Chromatography. J. Chromatogr. A 1998, 814, 121–132. DOI: 10.1016/S0021-9673(98)00375-6.
  • Bate-Smith, E. C.; Westall, R. G. Chromatographic Behaviour and Chemical Structure I. Some Naturally Occuring Phenolic Substances. Biochim. Biophys. Acta 1950, 4, 427–440. DOI: 10.1016/0006-3002(50)90049-7.
  • Soczewiński, E.; Wachtmeister, C. A. The Relation between the Composition of Certain Ternary Two-Phase Solvent Systems and RM Values. J. Chromatogr. A 1962, 7, 311–320. DOI: 10.1016/S0021-9673(01)86422-0.
  • Biagi, G. L.; Barbaro, A. M.; Sapone, A.; Recanatini, M. Determination of lipophilicity by Means of Reversed-Phase Thin-Layer Chromatography. I. Basic Aspects and Relationship between Slope and Intercept of TLC Equations. J. Chromatogr. A 1994, 662, 341–361. DOI: 10.1016/0021-9673(94)80521-0.
  • http://www.molinspiration.com (accessed October 2017).
  • http://www.simulation-plus.com (accessed October 2016).
  • https://preadmet.bmdrc.kr (accessed October 2017).
  • https://www.ncss.com/ (accessed February 2019).
  • Vastag, G.; Apostolov, S.; Perišić-Janjić, N.; Matijević, B. Multivariate Analysis of Chromatographic Retention Data and Lipophilicity of Phenylacetamide Derivatives. Anal. Chim. Acta 2013, 767, 44–49. DOI: 10.1016/j.aca.2013.01.002.
  • Stasiak, J.; Koba, M.; Baczek, T.; Bucinski, A. Chemometric Analysis of Some Biologically Active Groups of Drugs on the Basis Chromatographic and Molecular Modeling Data. Mc. 2015, 11, 432–452. DOI: 10.2174/1573406411666150114102926.
  • Karadžić, M.; Ž., Jevrić, L. R.; Mandić, A. I.; Markov, S. L.; Podunavac-Kuzmanović, S. O.; Kovačević, S. Z.; Nikolić, A. R.; Oklješa, A. M.; Sakač, M. N.; Penov-Gaši, K. M. Chemometrics Approach Based on Chromatographic Behavior, in Silico Characterization and Molecular Docking Study of Steroid Analogs with Biomedical Importance. Eur. J. Pharm. Sci 2017, 105, 71–81. DOI: 10.1016/j.ejps.2017.05.004.
  • Samsonowicz, M.; Regulska, E.; Karpowicz, D.; Leśniewska, B. Antioxidant Properties of Coffee Substitutes Rich in Polyphenols and Minerals. Food Chem 2019, 278, 101–109. DOI: 10.1016/j.foodchem.2018.11.057.
  • Lobell, M.; Molnár, L.; Keserü, G. M. Recent Advances in the Prediction of Blood-Brain Partitioning from Molecular Structure. J. Pharm. Sci 2003, 92, 360–370. DOI: 10.1002/jps.10282.
  • Fujita, T.; Iwasa, J.; Hansch, C. A New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. Soc. 1964, 86, 5175–5180. DOI: 10.1021/ja01077a028.
  • Hammett, L. P. The Effect of Structure upon the Reactions of Organic Compounds; Benzene Derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. DOI: 10.1021/ja01280a022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.