757
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Linearized non-equilibrium and non-isothermal two-dimensional model of liquid chromatography for studying thermal effects in cylindrical columns

, ORCID Icon &
Pages 436-451 | Received 26 Feb 2019, Accepted 27 May 2019, Published online: 18 Jun 2019

References

  • Guiochon, G.; Felinger, A.; Shirazi, D. G.; Katti, A. M. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed. Elsevier Academic Press: New York, 2006.
  • Miyabe, K.; Guiochon, G. Influence of the Modification Conditions of Alkyl Bonded Ligands on the Characteristics of Reversed-Phase Liquid Chromatography. J. Chromatogr. A. 2000, 903, 1–12. DOI: 10.1016/S0021-9673(00)00891-8.
  • Miyabe, K.; Guiochon, G. Measurement of the Parameters of the Mass Transfer Kinetics in High Performance Liquid Chromatography. J. Sep. Sci. 2003, 26, 155–173. DOI: 10.1002/jssc.200390024.
  • Ruthven, D. M. Principles of Adsorption and Adsorption Processes. Wiley-Interscience: New York, 1984.
  • Guiochon, G. Preparative Liquid Chromatography. J. Chromatogr. A. 2002, 965, 129–161.
  • Qamar, S.; Sattar, F. A.; Batool, I.; Seidel-Morgenstern, A. Theoretical Analysis of the Influence of Forced and Inherent Temperature Fluctuations in an Adiabatic Chromatographic Column. Chem. Eng. Sci. 2017, 161, 249–264. DOI: 10.1016/j.ces.2016.12.027.
  • Brandt, A.; Mann, G.; Arlt, W. Temperature Gradients in Preparative High-Performance Liquid Chromatography Columns. J. Chromatogr. A. 1997, 769, 109–117. DOI: 10.1016/S0021-9673(97)00235-5.
  • Javeed, S.; Qamar, S.; Ashraf, W.; Warnecke, G.; Seidel-Morgenstern, A. Analysis and Numerical Investigation of Two Dynamic Models for Liquid Chromatography. Chem. Eng. Sci. 2013, 90, 17–31. DOI: 10.1016/j.ces.2012.12.014.
  • Sainio, T.; Kaspereit, M.; Kienle, A.; Seidel-Morgenstern, A. Thermal Effects in Reactive Liquid Chromatography. Chem. Eng. Sci. 2007, 62, 5674–5681. DOI: 10.1016/j.ces.2007.02.033.
  • Sainio, T.; Zhang, L.; Seidel-Morgenstern, A. Adiabatic Operation of Chromatographic Fixed-Bed Reactors. Chem. Eng. J. 2011, 168, 861–871. DOI: 10.1016/j.cej.2011.02.010.
  • Haynes, H. W. Jr.; An Analysis of Sorption Heat Effects in the Pulse Gas Chromatography Diffusion Experiment. AIChE J. 1986, 32, 1750–1753. DOI: 10.1002/aic.690321021.
  • Guillaume, Y.; Guinchard, C. Prediction of Retention Times, Column Efficiency, and Resolution in Isothermal and Temperature-Programmed Gas Chromatography: Application for Separation of Four Psoalens. J. Chromatogr. Sci. 1997, 35, 14–18. DOI: 10.1093/chromsci/35.1.14.
  • Xiu, G.; Li, P.; Rodrigues, A. E. Sorption-Enhanced Reaction Process with Reactive Regeneration. Chem. Eng. Sci. 2002, 57, 3893–3908. DOI: 10.1016/S0009-2509(02)00245-2.
  • Peter, G. R.; Allan, L. O. Comparison of Isothermal and Non-Linear Temperature Programmed Gas Chromatography the Temperature Dependence of the Retention Indices of a Number of Hydrocarbons on Squalane and SE-30. J. Chromatogr. A. 1971, 57, 11–17. DOI: 10.1016/0021-9673(71)80002-X.
  • Kaczmarski, K.; Gritti, F.; Guiochon, G. Prediction of the Influence of the Heat Generated by Viscous Friction on the Efficiency of Chromatography Columns. J. Chromatogr. A. 2008, 1177, 92–104.
  • Gritti, F.; Michel Martin, M.; Guiochon, G. Influence of Viscous Friction Heating on the Efficiency of Columns Operated under Very High Pressures. Anal. Chem. 2009, 81, 3365–3384. DOI: 10.1021/ac802632x.
  • Teutenberg, T. High-Temperature Liquid Chromatography: A User’s Guide for Method Development. RSC Chromatography Mon. 2010, 13, 1–210.
  • Horváth, C.; Melander, W.; Molnar, I. Solvophobic Interactions in Liquid Chromatography with Nonpolar Stationary Phases. J. Chromatogr. A. 1976, 125, 129–156. DOI: 10.1016/S0021-9673(00)93816-0.
  • Antia, F. D.; Horvath, C. High-Performance Liquid Chromatography at Elevated Temperatures: Examination of Conditions for the Rapid Separation of Large Molecules. J. Chromatogr. A. 1988, 435, 1–15.
  • Snyder, D. C.; Dolan, J. W. Initial Experiments in High-Performance Liquid Chromatographic Method Development I. Use of a Starting Gradient Run. J. Chromatogr. A. 1996, 721, 3–14. DOI: 10.1016/0021-9673(95)00770-9.
  • Snyder, L. R.; Dolan, J. W.; Lommen, D. C. Drylab Ⓡ Computer Simulation for High-Performance Liquid Chromatographic Method Development: I. Isocratic Elution. J. Chromatogr. A. 1989, 485, 45–89.
  • Poppe, H. Some Reflections on Speed and Efficiency of Modern Chromatographic Methods. J. Chromatogr. A. 1997, 778, 3–21. DOI: 10.1016/S0021-9673(97)00376-2.
  • Poppe, H.; Kraak, J. C.; Huber, J. F. K.; Van den Berg, J. H. M. Temperature Gradients in HPLC Columns Due to Viscous Heat Dissipation. Chromatographia 1981, 14, 515–523. DOI: 10.1007/BF02265631.
  • Miyabe, K. Moment Analysis of Chromatographic Behavior in Reversed-Phase Liquid Chromatography. J. Sep. Sci. 2009, 32, 757–770. DOI: 10.1002/jssc.200800607.
  • Suzuki, M.; Smith, J. M. Kinetic Studies by Chromatography. Chem. Eng. Sci. 1971, 26, 221–235. DOI: 10.1016/0009-2509(71)80006-4.
  • Suzuki, M. Notes on Determining the Moments of the Impulse Response of the Basic Transformed Equations. J. Chem. Eng. Japan./Jcej. 1974, 6, 540–543. DOI: 10.1252/jcej.6.540.
  • Lapidus, L.; Amundson, N. R. Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns. J. Phys. Chem. 1952, 56, 986–988.
  • Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3, 107–115. DOI: 10.1063/1.1749604.
  • Schettler, P. D.; Giddings, J. C. New Method for Prediction of Binary Gas-Phase Diffusion Coefficients. Ind. Eng. Chem. 1966, 58, 18–27. DOI: 10.1021/ie50677a007.
  • Qamar, S.; Sattar, F. A.; Abbasi, J. N.; Seidel-Morgenstern, A. Numerical Simulation of Nonlinear Chromatography with Core-Shell Particles Applying the General Rate Model. Chem. Eng. Sci. 2016, 147, 54–64. DOI: 10.1016/j.ces.2016.03.027.
  • Qamar, S.; Bibi, S.; Khan, F. U.; Shah, M.; Javeed, S.; Seidel-Morgenstern, A. Irreversible and Reversible Reactions in a Liquid Chromatographic Column: Analytical Solutions and Moment Analysis. Ind. eng. Chem. Res. 2014, 53, 2461–2472. DOI: 10.1021/ie403645w.
  • Bibi, S.; Qamar, S.; Seidel-Morgenstern, A. Irreversible and Reversible Reactive Chromatography: Analytical Solutions and Moment Analysis for Rectangular Pulse Injections. J. Chromatogr. A. 2015, 1385, 49–62. DOI: 10.1016/j.chroma.2015.01.065.
  • Qamar, S.; Abbasi, J. N.; Javeed, S.; Shah, M.; Khan, F. U.; Seidel-Morgenstern, A. Analytical Solutions and Moment Analysis of Chromatographic Models for Rectangular Pulse Injections. J. Chromatogr. A. 2013, 1315, 92–106. DOI: 10.1016/j.chroma.2013.09.031.
  • Qamar, S.; Abbasi, J.; Mehwish, A.; Seidel-Morgenstern, A. Linear General Rate Model of Chromatography for Core-Shell Particles: Analytical Solutions and Moment Analysis. Chem. Eng. Sci. 2015, 137, 352–363. DOI: 10.1016/j.ces.2015.06.053.
  • Leweke, S.; von Lieres, E. Fast Arbitrary Order Moments and Arbitrary Precision Solution of the General Rate Model of Column Liquid Chromatography with Linear Isotherm. Comput. Chem. Eng. 2016, 84, 350–362. DOI: 10.1016/j.compchemeng.2015.09.009.
  • Qamar, S.; Khan, F. U.; Mehmood, Y.; Seidel-Morgenstern, A. Analytical Solution of a Two-Dimensional Model of Liquid Chromatography Including Moment Analysis. Chem. Eng. Sci. 2014, 116, 576–589. DOI: 10.1016/j.ces.2014.05.043.
  • Parveen, S.; Qamar, S.; Seidel-Morgenstern, A. Two-Dimensional Non-Equilibrium Model of Liquid Chromatography: Analytical Solutions and Moment Analysis. Chem. Eng. Sci. 2015, 122, 64–77. DOI: 10.1016/j.ces.2014.09.018.
  • Parveen, S.; Qamar, S.; Seidel-Morgenstern, A. Analysis of Two-Dimensional Non-Equilibrium Model of Linear Reactive Chromatography considering Irreversible and Reversible Reactions. Ind. Eng. Chem. Res. 2016, 55, 2471–2482. DOI: 10.1021/acs.iecr.5b04714.
  • Qamar, S.; Uche, D. U.; Khan, F. U.; Seidel-Morgenstern, A. Analysis of Linear Two-Dimensional General Rate Model for Chromatographic Columns of Cylindrical Geometry. J. Chromatogr. A 2017, 1496, 92–104. DOI: 10.1016/j.chroma.2017.03.048.
  • Guiochon, G.; Marchetti, N.; Mriziq, K.; Shalliker, R. A. Implementations of Two-Dimensional Liquid Chromatography. J. Chromatogr. A 2008, 1189, 109–168. DOI: 10.1016/j.chroma.2008.01.086.
  • Baur, J. E.; Kristensen, E. W.; Wightman, R. M. Radial Dispersion from Commercial High-Performance Liquid Chromatography Columns Investigated with Microvoltammetric Electrodes. Anal. Chem. 1988, 60, 2334–2338. DOI: 10.1021/ac00172a005.
  • Qamar, S.; Kiran, N.; Anwar, T.; Bibi, S.; Seidel-Morgenstern, A. Theoretical Investigation of Thermal Effects in an Adiabatic Chromatographic Column Using a Lumped Kinetic Model Incorporating Heat Transfer Resistances. Ind. Eng. Chem. Res. 2018, 57, 2287–2297. DOI: 10.1021/acs.iecr.7b04555.
  • Durbin, F. Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate’s Method. The Comput. J 1974, 17, 371–376. DOI: 10.1093/comjnl/17.4.371.
  • Gritti, F.; Gilar, M.; Joseph, A. J. Quasi-Adiabatic Vacuum-Based Column Housing for Very High-Pressure Liquid Chromatography. J. Chromatogr. A 2016, 1456, 226–234. DOI: 10.1016/j.chroma.2016.06.029.
  • Donald, E. P. Use of a Thermally Insulated Column for Improved Speed, Efficiency and Resolution in Packed-Column Supercritical Fluid Chromatography. J. Chromatogr. A 1997, 785, 129–134. DOI: 10.1016/S0021-9673(97)00207-0.
  • Carslaw, H. S.; Jaeger, J. C. Operational Methods in Applied Mathematics; Oxford University Press: Oxford, 1953.
  • Chen, J.-S.; Liu, Y.-H.; Liang, C.-P.; Liu, C.-W.; Lin, C.-W. Exact Analytical Solutions for Two-Dimensional Advection-Dispersion Equation in Cylindrical Coordinates Subject to Third-Type Inlet Boundary Conditions. Adv. Water Resour 2011, 34, 365–374. DOI: 10.1016/j.advwatres.2010.12.008.
  • Crank, J. The Mathematics of Diffusion, 2nd ed; Clarendon Press: Oxford, 1975.
  • Qamar, S.; Perveen, S.; Seidel-Morgenstern, A. Numerical Approximation of Nonlinear and Non-Equilibrium Two-Dimensional Model of Chromatography. Comput. Chem. Eng 2016, 94, 411–427. DOI: 10.1016/j.compchemeng.2016.08.008.