51
Views
2
CrossRef citations to date
0
Altmetric
Articles

Lipophilicity estimation of anti-proliferative and anti-inflammatory 6-substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines

, &

References

  • Gupta, R. R.; Kumar, M. Synthesis, Properties and Reactions of Phenothiazines. In Phenothiazines and 1,4-Benzothiazines – Chemical and Biological Aspects; Gupta, R. R., Ed.; Elsevier: Amsterdam, 1988; pp 1–161.
  • Motohashi, N.; Kawase, M.; Satoh, K.; Sakagami, H. Cytotoxic Potential of Phenothiazines. CDT. 2006, 7, 1055–1066. DOI: 10.2174/138945006778226624.
  • Aaron, J. J.; Gaye Seye, M. D.; Trajkovska, S.; Motohashi, N. N. Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies and Biological and Biomedical Properties and Applications. Top Heterocycl. Chem. (Springer-Verlag: Berlin) 2009; 16, 153–231.
  • Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent Progress in Biological Activities of Synthesized Phenothiazines. Eur. J. Med. Chem. 2011, 46, 3179–3189. DOI: 10.1016/j.ejmech.2011.05.013.
  • Jaszczyszyn, A.; Gąsiorowski, K.; Świątek, P.; Malinka, W.; Cieślik-Boczula, K.; Petrus, J.; Czarnik-Matusiewicz, B. Chemical Structure of Phenothiazine and Their Biological Activity. Pharm. Rep. 2012, 64, 16–23. DOI: 10.1016/S1734-1140(12)70726-0.
  • Oz, M.; Lorke, D. E.; Petroianu, G. A. Methylene Blue and Alzheimer’s Disease. Biochem. Pharmacol. 2009, 78, 927–932. DOI: 10.1016/j.bcp.2009.04.034.
  • Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Synthesis and Properties of Diaza-, Triaza- and Tetraazaphenothiazines. J. Heterocyclic Chem. 2009, 46, 355–391. DOI: 10.1002/jhet.42.
  • Pluta, K.; Jeleń, M.; Morak-Młodawska, B.; Zimecki, M.; Artym, J.; Kocięba, M.; Zaczyńska, E. Azaphenothiazines – Promising Phenothiazine Derivatives. An Insight into Nomenclature, Synthesis, Structure Elucidation and Biological Properties. Eur. J. Med. Chem. 2017, 138, 774–806. DOI: 10.1016/j.ejmech.2017.07.009.
  • Rutkowska, E.; Paja, K.; Jóźwiak, K. Lipophilicity-Methods of Determinationand Its Role in Medicinal Chemistry. Acta Pol. Pharm. 2013, 70, 3–18.
  • Wang, Q.; Zhang, L. Review of Research on Quantitative Structure-Retention Relationships in Thin Layer Chromatography. J. Liq. Chrom. Rel. Technol. 1999, 22, 1–14. DOI: 10.1081/JLC-100101639.
  • Sobańska, A. Application of Planar Chromatographic Descriptors to the Prediction of Physicochemical Properties and Biological Activity of Compounds. J. Liq. Chrom. Rel. Technol 2018, 41, 255–271. DOI: 10.1080/10826076.2018.1447886.
  • Hartmann, T.; Schmitt, J. Lipophilicity – Beyond Octanol/Water: A Short Comparison of Modern Technologies. Drug Discov. Today Technol. 2004, 1, 431–439. DOI: 10.1016/j.ddtec.2004.10.006.
  • Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M. Thin Layer Chromatography in Drug Discovery Process. J. Chromatogr. A. 2017, 1520, 9–22. DOI: 10.1016/j.chroma.2017.09.015.
  • Wicha-Komsta, K.; Komsta, Ł. Unconventional TLC Systems in Lipophilicity Determination: A Review. J. Liq. Chrom. Rel. Technol. 2017, 40, 219–225. DOI: 10.1080/10826076.2017.1298023.
  • Ionut, I.; Tiperciuc, B.; Oniga, O. Lipophilicity Evaluation of Some N1-Arylidene-Thiosemicarbazones and 1,3,4-Thiadiazolines with Antimicrobial Activity. J. Chromatogr. Sci. 2017, 55, 411–416. DOI: 10.1093/chromsci/bmw195.
  • Stoica, C. I.; Ionuț, I.; Vlase, L.; Tiperciuc, B.; Marc, G.; Oniga, S.; Araniciu, C.; Oniga, O. Lipophilicity Evaluation of Some Thiazolyl-1,3,4-Oxadiazole Derivatives with Antifungal Activity. Biomed. Chtomatogr 2018, 32, e4221. DOI: 10.1002/bmc.4221.
  • Mannhold, R.; Dross, K. Calculation Procedures for Molecular Lipophilicity: A Comparative Study. Quant. Struct-Act. Relat. 1996, 15, 403–409. DOI: 10.1002/qsar.19960150506.
  • Franke, U.; Munk, A.; Wiese, M. Ionization Constants and Distribution Coefficients of Phenothiazines as Calcium Channel Antagonists Determined by a pH-Metric Method and Correlation with Calculated Partition Coefficients. J. Pharm. Sci. 1999, 88, 89–95. DOI: 10.1021/js980206m.
  • Morak-Młodawska, B.; Pluta, K.; Jeleń, M. Estimation of the Lipophilicity of New Anticancer and Immunosuppressive 1,8-Diazaphenothiazine Derivatives. J. Chrom. Sci. 2015, 53, 462–466. DOI: 10.1093/chromsci/bmu065.
  • Morak-Młodawska, B.; Pluta, K.; Jeleń, M. Lipophilicity of New Anticancer 1,6- and 3,6-Diazaphenothiazines by Use RP-TLC and Different Computional Methods. J. Chrom. Sci. 2018, 56, 376–381. DOI: 10.1093/chromsci/bmy006.
  • Jeleń, M.; Pluta, K.; Morak-Młodawska, B. Determination of the Lipophilicity Parameters of New Antiproliferative 8-10-Substituted Quinobenzothiazines by Computational Methods and RP-TLC. J. Liq. Chromatogr. Rel. Technol 2014, 37, 1373–1382. DOI: 10.1080/10826076.2013.789805.
  • Jeleń, M.; Pluta, K.; Morak-Młodawska, B. The Lipophilicity Parameters of New Antiproliferative 6,9-Disubstituted Quinobenzothiazines Determined by Computational Methods and RP-TLC. J. Liq. Chromatogr. Rel. Technol 2015, 38, 1577–1584. DOI: 10.1080/10826076.2015.1079718.
  • Nowak, M.; Pluta, K. Study of the Lipophilicity of Novel Diquinothiazines. J. Planar Chrom. 2006, 19, 157–160. DOI: 10.1556/JPC.19.2006.2.13.
  • Swallow, S. Fluorine in Medicinal Chemistry. Prog. Med. Chem. 2015, 54, 65–133. DOI: 10.1016/bs.pmch.2014.11.001.
  • Bodor, N.; Gabanyi, Z.; Wong, C. K. A New Method for the Estimation of Partition Coefficient. J. Am. Chem. Soc. 1989, 111, 3783–3786. DOI: 10.1021/ja00193a003.
  • Mannhold, R.; Cruciani, G.; Dross, K.; Rekker, R.; Multivariate Analysis of Experimental and Computational Descriptors of Molecular Lipophilicity. J. Compt.-Aided Mol. Design. 1998, 12, 573–581. DOI: 10.1023/A:1008060415622.
  • Brooke, D.; Dobbs, J.; Williams, N. Octanol: Water Partition Coefficients (P): Measurement, Estimation, and Interpretation, Particularly for Chemicals with P > 105. Ecotoxic. Environ. Safety. 1986, 11, 251–260. DOI: 10.1016/0147-6513(86)90099-0.
  • Becker, H. Organikum-Organisch-Chemisches Grundpraktikum; Bochwic, B., Ed.; VEB Deutscher Verlagder Wissen-schaften: Berlin, 1967; PWN: Warsaw, 1971; p. 352. (Polish edition).
  • Jeleń, M.; Pluta, K.; Zimecki, M.; Morak-Młodawska, B.; Artym, J.; Kocięba, M. 6-Substituted 9-Fluoroquino[3,2-b]Benzo[1,4]Thiazines Display Strong Antiproliferative and Antitumor Properties. Eur. J. Med. Chem. 2015, 89, 411–420. DOI: 10.1016/j.ejmech.2014.10.070.
  • ClogP (CS Chem 3D ultra 7.0, Molecular Modeling and Analysis) Distributed by CambridgeSoft. (accessed Jun 10, 2018).
  • VCCLAB, Virtual Computional Chemistry Laboratory. 2016. http://www.vcclab.org (accessed Aug 20, 2018).
  • http://preadmet.bmdrc.org/dt_benefits/adme-prediction/ (accessed Jun 10, 2018).
  • Biaggi, G. L.; Barbaro, A. M.; Sapone, A. Basic Aspects and Relationship between Slope and Intercept of TLC Equations. J. Chromatogr. A. 1994, 662, 341–361. DOI: 10.1016/0021-9673(94)80521-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.