162
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Demonstration of high separation efficiency for polystyrene-modified sub-1 µm particles originating from silica monolith under isocratic elution mode in liquid chromatography

, , &

References

  • Gonzalez-Ruiz, V.; Olives, A. I.; Martin, M. A. Core-Shell Particles Lead the Way to Renewing High-Performance Liquid Chromatography. TrAC. Trends Anal. Chem. 2015, 64, 17–28. DOI: 10.1016/j.trac.2014.08.008.
  • Gritti, F.; Guiochon, G. Performance of Columns Packed with the New Shell Kinetex-C-18 Particles in Gradient Elution Chromatography. J. Chromatogr. A. 2010, 1217, 1604–1615. DOI: 10.1016/j.chroma.2010.01.008.
  • Sentell, K. B.; Dorsey, J. G. Retention Mechanisms in Reversed Phase Liquid Chromatography-Stationary Phase Bonding Density and Partitioning. Anal. Chem. 1989, 61, 930–934. DOI: 10.1021/ac00184a003.
  • Gritti, F.; Cavazzini, A.; Marchetti, N.; Guiochon, G. Comparison between the Efficiencies of Columns Packed with Fully and Partially Porous C18-Bonded Silica Materials. J Chromatogr. A. 2007, 1157, 289–303. DOI: 10.1016/j.chroma.2007.05.030.
  • Gritti, F.; Guiochon, G. Unusual Behavior of the Height Equivalent to a Theoretical Plate of a New Poroshell Stationary Phase at High Temperatures. J. Chromatogr. A. 2007, 1169, 125–138. DOI: 10.1016/j.chroma.2007.08.078.
  • Majors, R. E. Highlights of HPLC 2014. LCGC North Am. 2014, 32, 466–481.
  • Gritti, F.; Guiochon, G. Comparison between the Loading Capacities of Columns Packed with Partially and Totally Porous Fine Particles What Is the Effective Surface Area Available for Adsorption? J Chromatogr. A. 2007, 1176, 107–122. DOI: 10.1016/j.chroma.2007.10.076.
  • Tanaka, N.; Mccalley, D. V. Coreshell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal. Chem. 2016, 88, 279–298. DOI: 10.1021/acs.analchem.5b04093.
  • Borges, E. M. Silica, Hybrid Silica, Hydride Silica and Non-Silica Stationary Phases for Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 580–597. DOI: 10.1093/chromsci/bmu090.
  • Kirkland, J. J.; Schuster, S. A.; Johnson, W. L.; Boyes, B. E. Fused-Core Particle Technology in High-Performance Liquid Chromatography: An Overview. J. Pharm. Anal. 2013, 3, 303–312. DOI: 10.1016/j.jpha.2013.02.005.
  • Bell, D. S.; Majors, R. E. Current State of Superficially Porous Particle Technology in Liquid Chromatography. LCGC North Am. 2015, 33, 386–395.
  • Svec, F. Porous Polymer Monoliths: Amazingly Wide Variety of Techniques Enabling Their Preparation. J. Chromatogr. A. 2010, 1217, 902–992. DOI: 10.1016/j.chroma.2009.09.073.
  • Qiu, H.; Liang, X.; Sun, M.; Jiang, S. Development of Silica-Based Stationary Phases for High Liquid Chromatography. Anal. Bioanal. Chem. 2011, 399, 3307–3322. DOI: 10.1007/s00216-010-4611-x.
  • Namera, A.; Miyazaki, S.; Saito, T.; Nakamoto, A. Monolithic Silica with HPLC Separation and Solid Phase Extraction Materials for Determination of Drugs in Biological Materials. Anal. Meth. 2011, 3, 2189. DOI: 10.1039/c1ay05243h.
  • Ali, I.; Aboul-Enein, H. Y. Impact of Immobilized Polysaccharide Chiral Stationary Phases on Enantiomeric Separations. J. Sep. Sci. 2006, 29, 762–769. DOI: 10.1002/jssc.200500372.
  • Haginaka, J. Recent Progresses in Protein-Based Chiral Stationary Phases for Enantio Separations in Liquid Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 875, 12–19. DOI: 10.1016/j.jchromb.2008.05.022.
  • Kara, D.; Fisher, A. Modified Silica Gels and Their Use for the Preconcentration of Trace Elements. Sep. Purific. Rev. 2012, 41, 267–317. DOI: 10.1080/15422119.2011.608765.
  • Wang, H.; Dong, X.; Yang, M. Development of Separation Materials Using Controlled/Living Radical Polymerization. TrAC Trends Analyt. Chem. 2012, 31, 96–108. DOI: 10.1016/j.trac.2011.07.012.
  • Olivier, A.; Meyer, F.; Raquez, J. M.; Damman, P., Surface-Initiated Controlled Polymerization as a Convenient Method for Designing Functional Polymer Brushes: From Self Assembled Monolayers to Patterned Surfaces. Prog. Polymer Sci. 2012, 37, 157–181. DOI: 10.1016/j.progpolymsci.2011.06.002.
  • Moad, G.; Chen, M.; Häussler, M.; Postma, A.; Rizzardo, E.; Thang, S. H. Functional Polymers for Optoelectronic Applications by RAFT Polymerization. Polym. Chem. 2011, 2, 492–519. DOI: 10.1039/C0PY00179A.
  • Soler-Illia, G. J. A. A.; Azzaroni, O. Multi-Functional Hybrids by Combining Ordered Mesoporous Materials and Macro Molecular Building Blocks. Chem. Soc. Rev. 2011, 40, 1107. DOI: 10.1039/c0cs00208a.
  • Beija, M.; Marty, J. D.; Destarac, M. RAFT/MADIX Polymers for the Preparation of Polymer/Inorganic Nanohybrids. Prog. Polymer Sci. 2011, 36, 845–886. DOI: 10.1016/j.progpolymsci.2011.01.002.
  • Edmondson, S.; Armes, P. Synthesis of Surface-Initiated Polymer Brushes Using Macro Initiators. Polymer Int. 2009, 58, 307–316. DOI: 10.1002/pi.2529.
  • Fekete, S.; Olh, E.; Fekete, J. Fast Liquid Chromatography: The Domination of Core–Shell and Very Fine Particles. J. Chromatogr. A. 2012, 1228, 57–71. DOI: 10.1016/j.chroma.2011.09.050.
  • Gritti, F.; Guiochon, G. Measurement of the Eddy Dispersion Term in Chromatographic Columns: III. Application to New Prototypes of 4.6 mm ID Monolithic Columns. J. Chromatogr. A. 2012, 1225, 79–90DOI: 10.1016/j.chroma.2011.12.055.
  • Guiochon, G. Monolithic Columns in High-Performance Liquid Chromatography. J Chromatogr. A. 2007, 1168, 101–168. DOI: 10.1016/j.chroma.2007.05.090.
  • Halasz, I.; Naefe, M. Influence of Column Parameters on Peak Broadening in High-Pressure Liquid Chromatography. Anal. Chem. 1972, 44, 76–84. DOI: 10.1021/ac60309a021.
  • Mutton, I. M. Use of Short Columns and High Flow Rates for Rapid Gradient Reversed-Phase Chromatography. Chromatographia 1998, 47, 291–298. DOI: 10.1007/BF02466534.
  • Unger, K. K.; Kumar, D.; Grun, M.; Buchel, G.; Ludtke, S.; Adam, T.; Schumacher, K.; Renker, S. Synthesis of Spherical Porous Silicas in the Micron and Submicron Size Range: Challenges and Opportunities for Miniaturized High-Resolution Chromatographic and Electrokinetic Separations. J. Chromatogr. A. 2000, 892, 47–55. DOI: 10.1016/S0021-9673(00)00177-1.
  • Prouzet, E.; Boissière, C. A Review on the Synthesis, Structure and Applications in Separation Processes of Mesoporous MSU-X Silica Obtained with the Two-Step Process. Comptes Rendus Chimie 2005, 8, 579–596. DOI: 10.1016/j.crci.2004.09.011.
  • Brady, R.; Woonton, B.; Gee, M. L.; O'connor, A. J. Hierarchical Mesoporous Silica Materials for Separation of Functional Food ingredients––A Review. Innov. Food Sci. Emerg. Technol. 2008, 9, 243–248. DOI: 10.1016/j.ifset.2007.10.002.
  • Wang, Y.; Ai, F.; Ng, S.-C.; Tan, T. T. Y. Sub-2 μm Porous Silica Materials for Enhanced Separation Performance in Liquid Chromatography. J. Chromatogr. A. 2012, 1228, 99–109. DOI: 10.1016/j.chroma.2011.08.085.
  • Ali, F.; Cheong, W. J.; ALOthman, Z. A.; ALMajid, A. M. Polystyrene Bound Stationary Phase of Excellent Separation Efficiency Based on Partially Sub-2 µm Silica Monolith Particles. J. Chromatogr. A. 2013, 1303, 9–17. DOI: 10.1016/j.chroma.2013.06.016.
  • Ali, F.; Kim, Y. S.; Lee, J. W.; Cheong, W. J. Catalyst Assisted Synthesis of Initiator Attached Silica Monolith Particles via Isocyanate-Hydroxyl Reaction for Production of Polystyrene Bound Chromatographic Stationary Phase of Excellent Separation Efficiency. J. Chromatogr. A. 2014, 1324, 115–120. DOI: 10.1016/j.chroma.2013.11.027.
  • Ali, F.; Cheong, W. J. C18‐Bound Porous Silica Monolith Particles as a Low‐Cost High‐Performance Liquid Chromatography Stationary Phase with an Excellent Chromatographic Performance. J. Sep. Sci. 2014, 37, 3426–3434. DOI: 10.1002/jssc.201400811.
  • Yangfang, L.; Hui, W.; Yun, X.; Xue, G.; Yan, W.; Chao, Y. Preparation and Evaluation of Monodispersed, Submicron, Non-Porous Silica Particles Functionalized with β-CD Derivatives for Chiral-Pressurized Capillary Electrochromatography. Electrophoresis 2015, 36, 2120–2127. DOI: 10.1002/elps.201500122.
  • Ai, F.; Li, L.; Ng, S.-C.; Tan, T. T. Y. Sub-1-Micron Mesoporous Silica Particles Functionalized with Cyclodextrin Derivative for Rapid Enantioseparations on Ultra-High Pressure Liquid Chromatography. J. Chromatogr. A. 2010, 1217, 7502–7506. DOI: 10.1016/j.chroma.2010.09.061.
  • Li, L.-S.; Wang, Y.; Young, D. J.; Ng, S.-C.; Tan, T. T. Y. Monodispersed Submicron Porous Silica Particles Functionalized with CD Derivatives for Chiral CEC. Electrophoresis. 2010, 31, 378–387. DOI: 10.1002/elps.200900318.
  • Reynolds, J.,K.; Colón, L. A. Submicron Sized Organo-Silica Spheres for Capillary Electrochromatography. J. Liq. Chrom. Rel. Technol. 2000, 23, 161–173. DOI: 10.1081/JLC-100101443.
  • Ko, J. H.; Baik, Y. S.; Park, S. T.; Cheong, W. J. Ground Sieved and C18 Modified Monolithic Silica Particles for Packing Material of Micro Column High-Performance Liquid Chromatography. J. Chromatogr. A. 2007, 1144, 269–274. DOI: 10.1016/j.chroma.2007.01.086.
  • Han, K. M.; Cheong, W. J. C18 Modified Monolith Silica Particles of 3-5 µm. Bull. Korean Chem. Soc. 2008, 29, 2281–2283.
  • Ali, A.; Ali, F.; Cheong, W. J. Sedimentation Assisted Preparation of Ground Particles of Silica Monolith and Their C18 Modification Resulting in a Chromatographic Phase of Improved Separation Efficiency. J. Chromatogr. A. 2017, 1525, 79–86. DOI: 10.1016/j.chroma.2017.10.014.
  • Ali, A.; Sun, G.; Kim, J. S.; Cheong, W. J. Polystyrene Bound Silica Monolith Particles of Reduced Size as Stationary Phase of Excellent Separation Efficiency in High Performance Liquid Chromatograhy. J. Chromatogr. A. 2019, 1594, 72–81. DOI: 10.1016/j.chroma.2019.02.013.
  • Walter, T. H.; Andrews, R. W. Recent Innovations in UHPLC Columns and Instrumentation. TrAC Trends Analyt. Chem. 2014, 63, 14–20. DOI: 10.1016/j.trac.2014.07.016.
  • De Vos, J.; Broeckhoven, K.; Eeltink, S. Advances in Ultrahigh-Pressure Liquid Chromatography Technology and System Design. Anal. Chem. 2016, 88, 262–278. DOI: 10.1021/acs.analchem.5b04381.
  • De Vos, J.; De Pra, M.; Desmet, G.; Swart, R.; Edge, T.; Steiner, F.; Eeltink, S. High-Speed Isocratic and Gradient Liquid-Chromatography Separations at 1500 Bar. J. Chromatogr. A. 2015, 1409, 138–145. DOI: 10.1016/j.chroma.2015.07.043.
  • Gritti, F.; Guiochon, G. The Current Revolution in Column Technology: How It Began, Where Is It Going?. J. Chromatogr. A. 2012, 1228, 2–19. DOI: 10.1016/j.chroma.2011.07.014.
  • Wang, H. S.; Song, M.; Hang, T. J. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry. ACS Appl. Mater. Interf. 2016, 8, 2881–2898. DOI: 10.1021/acsami.5b10465.
  • Keddie, D. J. A Guide to the Synthesis of Block Copolymers Using Reversible-Addition Fragmentation Chain Transfer (RAFT) Polymerization. Chem. Soc. Rev. 2014, 43, 496–505. DOI: 10.1039/C3CS60290G.
  • Barlow, K. J.; Hao, X.; Hughes, T. C.; Hutt, O. E.; Polyzos, A.; Turner, K. A.; Moad, G. Porous, Functional, Poly (Styrene-co-Divinylbenzene) Monoliths by RAFT Polymerization. Polymer Chem. 2014, 5, 722–732. DOI: 10.1039/C3PY01015E.
  • Moad, G.; Thang, S. H. RAFT Polymerization: Materials of the Future, Science of Today: Radical Polymerization––the Next Stage. Aust. J. Chem. 2009, 62, 1379–1381. DOI: 10.1071/CH09549.
  • Meyer, F. R.; Hartwick, A. Efficient Packing of Small Particle Microbore Columns. Anal. Chem. 1984, 56, 2211–2214. DOI: 10.1021/ac00276a051.
  • Vissers, J. P. C.; Hoeben, M. A.; Laven, J.; Claessens, H. A.; Cramers, C. A. Hydrodynamic Aspects of Slurry Packing Processes in Microcolumn Liquid Chromatography. J. Chromatogr. A. 2000, 883, 11–25. DOI: 10.1016/S0021-9673(00)00276-4.
  • Wahab, M. F.; Patel, D. C.; Wimalasinghe, R. M.; Armstrong, D. W. Fundamental and Practical Insights on the Packing of Modern High-Efficiency Analytical and Capillary Columns. Anal. Chem. 2017, 89, 8177–8191. DOI: 10.1021/acs.analchem.7b00931.
  • Gritti, F.; Wahab, M. F. Understanding the Science behind Packing High-Efficiency Columns and Capillaries: Facts, Fundamentals, Challenges, and Future Directions. LC-GC North. Am. 2018, 36, 82–98.
  • Blue, L. E.; Jorgenson, J. W. 1.1 μm Superficially Porous Particles for Liquid Chromatography. Part I: Synthesis and Particle Structure Characterization. J. Chromatogr. A. 2011, 1218, 7989–7995. DOI: 10.1016/j.chroma.2011.09.004.
  • Bruns, S.; Tallarek, U. Physical Reconstruction of Packed Beds and Their Morphological Analysis: Core–Shell Packings as an Example. J. Chromatogr. A. 2011, 1218, 1849–1860. DOI: 10.1016/j.chroma.2011.02.013.
  • Bruns, D.; Stoeckel, B.; Smarsly, M.; Tallarek, U. Influence of Particle Properties on the Wall Region in Packed Capillaries. J. Chromatogr. A. 2012, 1268, 53–63. DOI: 10.1016/j.chroma.2012.10.027.
  • Daneyko, A.; Höltzel, A.; Khirevich, S.; Tallarek, U. Influence of the Particle Size Distribution on Hydraulic Permeability and Eddy Dispersion in Bulk Packings. Anal. Chem. 2011, 83, 3903–3910. DOI: 10.1021/ac200424p.
  • Gritti, F.; Bell, D. S.; Guiochon, G. Particle Size Distribution and Column Efficiency. An Ongoing Debate Revived with 1.9 μm Titan-C18 Particles. J. Chromatogr. A. 2014, 1355, 179–192. DOI: 10.1016/j.chroma.2014.06.029.
  • Reising, A. E.; Godinho, J. S.; Hormann, K.; Jorgenson, J. W.; Tallarek, U. Larger Voids in Mechanically Stable, Loose Packings of 1.3 μm Frictional, Cohesive Particles: Their Reconstruction, Statistical Analysis, and Impact on Separation Efficiency. J. Chromatogr. A. 2016, 1436, 118–132. DOI: 10.1016/j.chroma.2016.01.068.
  • De Villiers, A.; Lestremau, F.; Szucs, R.; Gelebart, S.; David, F.; Sandra, P. Evaluation of Ultra Performance Liquid Chromatography: Part I. Possibilities and Limitations. J Chromatogr. A. 2006, 1127, 60–69. DOI: 10.1016/j.chroma.2006.05.071.
  • Mazzeo, J. R.; Neue, U. D.; Kele, M.; Plumb, R. S. Advancing LC Performance with Smaller Particles and Higher Pressure. Anal. Chem. 2005, 77, 460A–467A. DOI: 10.1021/ac053516f..
  • Olah, E.; Fekete, S.; Fekete, J.; Ganzler, K. Comparative Study of New Shell-Type, Sub-2 Micron Fully Porous and Monolith Stationary Phases Focusing on Mass-Transfer Resistance. J. Chromatogr. A. 2010, 1217, 3642–3653. DOI: 10.1016/j.chroma.2010.03.052.
  • Unger, K. K.; Skudas, R.; Schulte, M. M. Particle Packed Columns and Monolithic Columns in High-Performance Liquid Chromatography-Comparison and Critical Appraisal. J Chromatogr. A. 2008, 1184, 393–415. DOI: 10.1016/j.chroma.2007.11.118.
  • Hwang, D. G.; Zaidi, S. A.; Cheong, W. J. A New Stationary Phase with Improved Ligand Morphology Prepared by Polymerization of Styrene upon Initiator-Attached Lichorsorb Silica Particles. Bull. Korean Chem. Soc. 2009, 30, 3127–3130. DOI: 10.5012/bkcs.2009.30.12.3127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.