1,132
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical solution of nonlinear and non-isothermal general rate model of reactive liquid chromatography

, , & ORCID Icon

References

  • Rodrigues, A. E.; Pereira, C. S. M.; Santos, C. S. M. The Chromatographic Reactors. Chem. Eng. Technol. 2012, 35, 1171–1183.
  • Kawase, M.; Suzuki, T. B.; Inoue, K.; Yoshimoto, K.; Hashimoto, K. Increased Esterification Conversion by Application of the Simulated Moving Bed Reactor. Chem. Eng. Sci. 1996, 51, 2971–2981.
  • Kawase, M.; Inoue, Y.; Araki, T.; Hashimoto, K. The Simulated-Moving-Bed Reactor for Production of Bisphenol. Catal. Today. 1999, 48, 199–209.
  • Mazzotti, M.; Kruglov, A.; Neri, B.; Gelosa, D.; Morbidelli, M. A Continuous Chromatographic Reactor: SMBR. Chem. Eng. Sci. 1996, 51, 1827–1836.
  • Mazzotti, M.; Neri, B.; Gelosa, D.; Kruglov, A.; Morbidelli, M. Kinetics of Liquid-Phase Esterification Catalyzed by Acidic Resins. Ind. Eng. Chem. Res. 1997, 36, 3–10.
  • Mazzotti, M.; Neri, B.; Gelosa, D.; Morbidelli, M. Dynamics of a Chromatographic Reactor: Esterification Catalyzed by Acidic Resins. Ind. Eng. Chem. Res. 1997, 36, 3163–3172.
  • Mai, P. T.; Vu, T. D.; Mai, K. X.; Seidel-Morgenstern, A. Analysis of Heterogeneously Catalyzed Ester Hydrolysis Performed in a Chromatographic Reactor and in a Reaction Calorimeter. Ind. Eng. Chem. Res. 2004, 43, 4691–47026.
  • Carta, G. Exact Analytical Solution of a Mathematical Model for Chromatographic Operations. Chem. Eng. Sci. 1988, 43, 2877–2883.
  • Mensah, P.; Carta, G. Adsorptive Control of Water in Esterification with Immobilized Enzymes. Continuous Operation in a Periodic Countercurrent Reactor. Biotechnol. Bioeng. 1999, 66, 137–146.
  • Fricke, J.; Meurer, M.; Dreisörner, J.; Schmidt-Traub, H. Effect of Process Parameters on the Performance of a Simulated Moving Bed Chromatographic Reactor. Chem. Eng. Sci. 1999, 54, 1487–1492.
  • Fricke, J.; Schmidt-Traub, H.; Kawase, M. Chromatographic Reactor–Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag: Weinheim, Germany, 2005.
  • Hashimoto, K.; Adachi, S.; Noujima, H.; Ueda, Y. A New Process Combining Adsorption and Enzyme Reaction for Producing Higher-Fructose Syrup. Biotechnol. Bioeng. 1983, 25, 2371–2393.
  • Howard, A.; Carta, G.; Byers, C. Separation of Sugars by Continuous Annular Chromatography. Ind. Eng. Chem. Res. 1988, 27, 1873–1882.
  • Takeuchi, K.; Uraguchi, Y. Basic Design of Chromatographic Moving Bed Reactors for Product Refining. J. Chem. Eng. Jpn. 1976, 9, 246–248.
  • Takeuchi, K.; Uraguchi, Y. Separation Conditions of the Reactant and the Product with a Chromatographic Moving Bed Reactor. J. Chem. Eng. Jpn. 1976, 9, 164–166.
  • Takeuchi, K.; Miyauchi, T.; Uraguchi, Y. Computational Studies of a Chromatographic Moving Bed Reactor for Consecutive and Reversible Reactions. J. Chem. Eng. Jpn. 1978, 11, 216–220.
  • Qamar, S.; Bibi, S.; Khan, F. U.; Shah, M.; Javeed, S.; Seidel-Morgenstern, A. Irreversible and Reversible Reactions in a Liquid Chromatographic Column: Analytical Solutions and Moment Analysis. Ind. Eng. Chem. Res. 2014, 53, 2461–2472.
  • Qamar, S.; Perveen, S.; Seidel-Morgenstern, A. Numerical Approximation of a Two-Dimensional Nonlinear and Nonequilibrium Model of Reactive Chromatography. Ind. Eng. Chem. Res. 2016, 55, 9003–9014.
  • Qamar, S.; Sattar, F. A.; Seidel-Morgenstern, A. Seidel-Morgenstern, A. Theoretical Investigation of Thermal Effects in Non-Isothermal Non-Equilibrium Reactive Liquid Chromatography. Chem. Eng. Res. Design 2016, 115, 145–159.
  • Michel, M.; Schmidt‐Traub, H.; Ditz, R.; Schulte, M.; Kinkel, J.; Stark, W.; Küpper, M.; Vorbrodt, M. Development of an Integrated Process for Electrochemical Reaction and Chromatographic SMB-Separation. J. Appl. Electrochem. 2003, 33, 939–949.
  • Ganetsos, G.; Barker, P. E. Preparative and Production Scale Chromatography; Marcel Dekker, Inc.: New York, NY, 1993; Vol. 61; pp 375–523.
  • Sardin, M.; Schweich, D.; Barker, P.E. (Eds.). Preparative Fixed-Bed Chromatographic Reactor, Preparative and Production Scale Chromatography; Marcel Dekker Inc.: New York, 1993; pp 477–522.
  • Borren, T.; Fricke, J.; Schmidt-Traub, H. (Eds.). Chromatographic Reactors in Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents; Wiley-VCH Verlag: Weinheim, Germany, 2005; pp 371–395.
  • Brandt, A.; Mann, G.; Arlt, W. Temperature Gradients in Preparative Highperformance Liquid Chromatography Columns. J. Chromatogr. A. 1997, 769, 109–117.
  • Sainio, T. Ion-exchange Resins as Stationary Phase in Reactive Chromatography. Acta Universitatis Lappeenrantaensis 218, Dissertation. Lappeenranta University of Technology, 2005.
  • Sainio, T.; Kaspereit, M.; Kienle, A.; Seidel-Morgenstern, A. Thermal Effects in Reactive Liquid Chromatography. Chem. Eng. Sci. 2007, 62, 5674–5681.
  • Sainio, T.; Zhang, L.; Seidel-Morgenstern, A. Adiabatic Operation of Chromatographic Fixed-Bed Reactors. Chem. Eng. J. 2011, 168, 861–871.
  • Vu, T. D.; Seidel-Morgenstern, A. Quantifying Temperature and Flow Rate Effects on the Performance of a Fixed-Bed Chromatographic Reactor. J. Chromatogr. A. 2011, 1218, 8097–8109.
  • Javeed, S.; Qamar, S.; Seidel-Morgenstern, A.; Warnecke, G. Parametric Study of Thermal Effects in Reactive Liquid Chromatography. Chem. Eng. J. 2012, 191, 426–440.
  • Kruglov, A. Methanol Synthesis in a Simulatedcountercurrent Moving-Bed Adsorptive Catalytic Reactor. Chem. Eng. Sci. 1994, 49, 4699–4716.
  • Yongsunthon, I.; Alpay, E. Design of Periodic Adsorptivereactors for the Optimal Integration of Reaction, Separationand Heat Exchange. Chem. Eng. Sci. 1999, 54, 2647–2657.
  • Xiu, G.; Li, P.; Rodrigues, A. E. Sorption-Enhanced Reactionprocess with Reactive Regeneration. Chem. Eng. Sci. 2002, 57, 3893–3908.
  • Glöckler, B.; Dieter, H.; Eigenberger, G.; NieKen, U. Efficientreheating of a Reverse-Flow Reformer-an Experimental Study. Chem. Eng. Sci. 2007, 62, 5638–5643.
  • Eigenberger, G.; Kolios, G.; NieKen, U. Efficient Reheating of a Reverse-Flow Reformer-an Experimental Study. Chem. Eng. Sci. 2007, 62, 4825–4841.
  • Ruthven, D. M. Principles of Adsorption and Adsorption Processes; Wiley-Interscience: New York, NY, 1984.
  • Guiochon, G. Preparative Liquid Chromatography. J. Chromatogr. A. 2002, 965, 129–161.
  • Guiochon, G.; Lin, B. Modeling for Preparative Chromatography; Academic Press: Cambridge, MA, 2003.
  • Guiochon, G.; Felinger, A.; Shirazi, D. G.; Katti, A. M. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed.; ELsevier Academic Press: New York, NY, 2006.
  • Danckwerts, P. V. Continuous Flow System Distribution of Residence Times. J. Chem. Eng. Sci. 1953, 2, 1–13.
  • Lieres, E. V.; Andersson, J. A Fast and Accurate Solver for the General Rate Model of Column Liquid Chromatography. J. Comput. Chem. Eng. 2010, 34, 1180–1191.
  • Koren, B. A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms. In Numerical Methods for Advection-Diffusion Problems, Volume 45 of Notes on Numerical Fluid Mechanics; Vreugdenhil, C. B., Koren, B., Eds.; Chapter 5; Vieweg Verlag: Braunschweig, Germany, 1993; pp. 117.
  • Javeed, S.; Qamar, S.; Seidel-Morgenstern, A.; Warnecke, G. Efficient and Accurate Numerical Simulation of Nonlinear Chromatographic Processes. J. Comput. Chem. Eng. 2011, 35, 2294–2305.