592
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A robust RP-HPLC method for determination of turmeric adulteration

ORCID Icon, , &

References

  • Sen, A. R.; Gupta, P. S.; Dastidar, N. G. Detection of Curcuma Zedoaria and Curcuma Aromatica in Curcuma Longa (Turmeric) by Thin-Layer Chromatography. Analyst 1974, 99, 153–155. DOI: 10.1039/an9749900153.
  • Hong, E. Y.; Lee, S. Y.; Jeong, J. Y.; Park, J. M.; Kim, B. H.; Kwon, K. K.; Chun, H. S. Modern Analytical Methods for the Detection of Food Fraud and Adulteration by Food Category. J. Sci. Food Agric. 2017, 97, 3877–3896. DOI: 10.1002/jsfa.8364.
  • Bejar, E. Turmeric (Curcuma Longa) Root and Rhizome, and Root and Rhizome Extracts. Bot. Adulterants Bull. 2018, May, 1–11.
  • Dixit, S.; Khanna, S. K.; Das, M. A Simple 2-Directional High-Performance Thin-Layer Chromatographic Method for the Simultaneous Determination of Curcumin, Metanil Yellow, and Sudan Dyes in Turmeric, Chili, and Curry Powders. J. AOAC Int. 2008, 91, 1387–1396.
  • Cowell, W.; Ireland, T.; Vorhees, D.; Heiger-Bernays, W. Ground Turmeric as a Source of Lead Exposure in the United States. Public Health Rep. 2017, 132, 289–293. DOI: 10.1177/0033354917700109.
  • Wikipedia. Metanil Yellow 2019. https://en.wikipedia.org/w/index.php?title=Metanil_Yellow&oldid=811439657. (accessed June 15, 2019)
  • Everstine, K.; Spink, J.; Kennedy, S. Economically Motivated Adulteration (EMA) of Food: Common Characteristics of EMA Incidents. J. Food Prot. 2013, 76, 723–735. DOI: 10.4315/0362-028X.JFP-12-399.
  • Tripathi, M.; Khanna, S. K.; Das, M. Surveillance on Use of Synthetic Colours in Eatables Vis a Vis Prevention of Food Adulteration Act of India. Food Contr. 2007, 18, 211–219. DOI: 10.1016/j.foodcont.2005.09.016.
  • Rafi, M.; Jannah, R.; Heryanto, R.; Kautsar, A.; Septaningsih, D. A. UV-Vis Spectroscopy and Chemometrics as a Tool for Identification and Discrimination of Four Curcuma Species. Int. Food Res. J. 2018, 25, 643–648.
  • Kadam, P. V.; Yadav, K. N.; Bhingare, C. L.; Patil, M. J. Standardization and Quantification of Curcumin from Curcuma Longa Extract Using Uv Visible Spectroscopy and HPLC. J. Pharmacogn. Phytochem. 2018, 7, 1913–1918.
  • Osorio-Tobón, J. F.; Carvalho, P. I.; Barbero, G. F.; Nogueira, G. C.; Rostagno, M. A.; Meireles, M. A. Fast Analysis of Curcuminoids from Turmeric (Curcuma Longa L.) by High-Performance Liquid Chromatography Using a Fused-Core Column. Food Chem. 2016, 200, 167–174. DOI: 10.1016/j.foodchem.2016.01.021.
  • Reolon, J. B.; Brustolin, M.; Haas, S. E.; Bender, E. A.; Malesuik, M. D.; Colomé, L. M. Development and Validation of High-Performance Liquid Chromatography Method for Simultaneous Determination of Acyclovir and Curcumin in Polymeric Microparticles. J. Appl. Pharm. Sci. 2018, 8, 136–141. DOI: 10.7324/JAPS.2018.8120.
  • Wulandari, R.; Sudjadi  ; Martono, S.; Rohman, A. Liquid Chromatography and Fourier Transform Infrared Spectroscopy for Quantitative Analysis of Individual and Total Curcuminoid in Curcuma longa Extract. J. Appl. Pharm. Sci. 2018, 8, 107–113. DOI: 10.7324/JAPS.2018.8916.
  • Koneru, S.; Rao, G. D.; Mandava, V. B. R. Development and Validation of Analytical Method for Standardisation of Curcumin Using RP-HPLC Method in Prepared Extract. Res. J. Pharm. Technol. 2018, 11, 1580–1583. DOI: 10.5958/0974-360X.2018.00294.9.
  • Chao, I. C.; Wang, C. M.; Li, S. P.; Lin, L. G.; Ye, W. C.; Zhang, Q. W. Simultaneous Quantification of Three Curcuminoids and Three Volatile Components of Curcuma Longa Using Pressurized Liquid Extraction and High-Performance Liquid Chromatography. Molecules 2018, 23, 1568–1576. DOI: 10.3390/molecules23071568.
  • Radha, A.; Ragavendran, P.; Thomas, A.; Kumar, D. S. A Cost Effective HPLC Method for the Analysis of Curcuminoids. Hygeia J. D. Med. 2016, 8, 1–15. DOI: 10.15254/H.J.D.Med.8.2016.152.
  • Mudge, E. M.; Brown, P. N. Determination of Curcuminoids in Turmeric Raw Materials and Dietary Supplements by HPLC: Single-Laboratory Validation. J. AOAC Int. 2018, 101, 203–207. DOI: 10.5740/jaoacint.17-0111.
  • Amanolahi, F.; Mohammadi, A.; Oskuee, R. K.; Nassirli, H.; Malaekeh-Nikoue, B. A Simple, Sensitive and Rapid Isocratic Reversed-Phase High-Performance Liquid Chromatography Method for Determination and Stability Study of Curcumin in Pharmaceutical Samples. Avicenna J. Phytomed. 2017, 7, 444–453. DOI: 10.5740/jaoacint.17-0111
  • Peram, M. R.; Jalalpure, S. S.; Palkar, M. B.; Diwan, P. V. Stability Studies of Pure and Mixture Form of Curcuminoids by Reverse Phase-HPLC Method under Various Experimental Stress Conditions. Food Sci. Biotechnol. 2017, 26, 591–602. DOI: 10.1007/s10068-017-0087-1.
  • Shervington, L.; Ingham, O.; Shervington, A. Purity Determination of Three Curcuminoids Found in Ten Commercially Available Turmeric Dietary Supplements Using a Reverse Phase HPLC Method. Nat. Prod. Chem. Res. 2016, 4, 244–249. DOI: 10.4172/2329-6836.1000244.
  • Jaiswal, S.; Yadav, D. S.; Mishra, M. K.; Gupta, A. K. Detection of Adulterants in Spices through Chemical Method and Thin Layer Chromatography for Forensic Consideration. Int. J. Dev. Res. 2016, 06, 8824–8827.
  • Rasheed, N. M. A.; Srividya, G. S.; Nagaiah, K. HPTLC Method Development and Quantification of Curcumin Content in Different Extracts of Rhizomes of Curcuma longa L. Ann. Phytomed. 2017, 6, 74–81. DOI: 10.21276/ap.2017.6.2.6.
  • Poudel, A.; Pandey, J.; Lee, H. K. Geographical Discrimination in Curcuminoids Content of Turmeric Assessed by Rapid UPLC-DAD Validated Analytical Method. Molecules 2019, 24, 1805–1815. DOI: 10.3390/molecules24091805.
  • Bessaire, T.; Savoy, M. C.; Mujahid, C.; Tarres, A.; Mottier, P. A New High-Throughput Screening Method to Determine Multiple Dyes in Herbs and Spices. Food Addit. Contam. Part A. 2019, 36, 836–850. DOI: 10.1080/19440049.2019.1596320s.
  • Jin, S.; Song, C.; Jia, S.; Li, S.; Zhang, Y.; Chen, C.; Feng, Y.; Xu, Y.; Xiong, C.; Xiang, Y.; et al. An Integrated Strategy for Establishment of Curcuminoid Profile in Turmeric Using Two LC–Ms/Ms Platforms. J. Pharm. Biomed. Anal. 2017, 132, 93–102. DOI: 10.1016/j.jpba.2016.09.039.
  • Kunati, S. R.; Yang, S.; William, B. M.; Xu, Y. An LC-MS/MS Method for Simultaneous Determination of Curcumin, Curcuminglucuronide and Curcumin Sulfate in a Phase II Clinical Trial. J. Pharm. Biomed. Anal. 2018, 156, 189–198. DOI: 10.1016/j.jpba.2018.04.034.
  • Liu, Y. Q.; Siard, M.; Adams, A.; Keowen, M. L.; Miller, T. K.; Garza, F.; Andrews, F. M.; Seeram, N. P. Simultaneous Quantification of Free Curcuminoids and Their Metabolites in Equine Plasma by LC-ESI-MS/MS. J. Pharm. Biomed. Anal. 2018, 154, 31–39. DOI: 10.1016/j.jpba.2018.03.014.
  • Yu, W.; Wen, D.; Cai, D.; Zheng, J.; Gan, H.; Jiang, F.; Liu, X.; Lao, B.; Yu, W.; Guan, Y.; et al. Simultaneous Determination of Curcumin, Tetrahydrocurcumin, Quercetin, and Paeoniflorin by UHPLC-MS/MS in Rat Plasma and Its Application to a Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2019, 172, 58–66.
  • Hayun, H.; Rahmawati, R.; Harahap, Y.; Sari, S. P. Development of UPLC–MS/MS Method for Quantitative Analysis of Curcumin in Human Plasma. Acta Chromatogr. 2017, 30, 1–5. DOI: 10.1556/1326.2017.00153.
  • Huang, Y. S.; Hsieh, T. J.; Lu, C. Y. Simple Analytical Strategy for MALDI-TOF-MS and NanoUPLC–MS/MS: Quantitating Curcumin in Food Condiments and Dietary Supplements and Screening of Acrylamide-Induced Ros Protein Indicators Reduced by Curcumin. Food Chem. 2015, 174, 571–576. DOI: 10.1016/j.foodchem.2014.11.115.
  • Jude, S.; Amalraj, A.; Kunnumakkara, A. B.; Divya, C.; Löffler, B. M.; Gopi, S. Development of Validated Methods and Quantification of Curcuminoids and Curcumin Metabolites and Their Pharmacokinetic Study of Oral Administration of Complete Natural Turmeric Formulation (CureitTM) in Human Plasma via UPLC/ESI-Q-TOF-MS Spectrometry. Molecules 2018, 23, 2415–2430. DOI: 10.3390/molecules23102415.
  • Jia, S.; Du, Z.; Song, C.; Jin, S.; Zhang, Y.; Feng, Y.; Xiong, C.; Jiang, H. L. Identification and Characterization of Curcuminoids in Turmeric Using Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight Tandem Mass Spectrometry. J. Chromatogr. A. 2017, 1521, 110–122. DOI: 10.1016/j.chroma.2017.09.032.
  • Li, R.; Liu, F.; Yang, X.; Chen, L-q.; Wang, F.; Zhang, G-l.; Zhang, Q.; Zhang, L.; He, Y-x.; Li, Y-f.; et al. Analysis of Bisabolocurcumin Ether (a Terpene-Conjugated Curcuminoid) and Three Curcuminoids in Curcuma Species from Different Regions by UPLC-ESIMS/MS and Their in Vitro anti-Inflammatory Activities. J. Funct. Foods 2019, 52, 186–195. DOI: 10.1016/j.jff.2018.11.008.
  • Dhakal, S.; Schmidt, W. F.; Kim, M.; Tang, X. Y.; Peng, Y. K.; Chao, K. Detection of Additives and Chemical Contaminants in Turmeric Powder Using FT-IR Spectroscopy. Foods 2019, 8, 143–157. DOI: 10.3390/foods8050143.
  • Prabaningdyah, N. K.; Riyanto, S.; Rohman, A. Application of FTIR Spectroscopy and Multivariate Calibration for Analysis of Curcuminoid in Syrup Formulation. J. Appl. Pharm. Sci. 2018, 8, 172–179. DOI: 10.7324/JAPS.2018.8324.
  • Thangavel, K.; Dhivya, K. Determination of Curcumin, Starch and Moisture Content in Turmeric by Fourier Transform near Infrared Spectroscopy (FT-NIR). Eng. Agri. Env. Food 2019, 12, 264–269. DOI: 10.1016/j.eaef.2019.02.003.
  • Kar, S.; Tudu, B.; Jana, A.; Bandyopadhyay, R. FTNIR Spectroscopy Coupled with Multivariate Analysis for Detection of Starch Adulteration in Turmeric Powder. Food Addit. Contam. Part A. 2019, 36, 863–875. DOI: 10.1080/19440049.2019.1600746.
  • Windarsih, A.; Rohman, A.; Swasono, R. T. Application of 1H-NMR Based Metabolite Fingerprinting and Chemometrics for Authentication of Curcuma Longa Adulterated with C. Heyneana. J. Appl. Res. Med. Aromat. Plants 2019, 13, 100203. DOI: 10.1016/j.jarmap.100203.
  • Windarsih, A.; Rohman, A.; Swasono, R. T. Application of H-NMR Metabolite Fingerprinting and Chemometrics for the Authentication of Curcuma Longa Adulterated with Curcuma Manga. J. Appl. Pharm. Sci. 2018, 8, 75–81. DOI: 10.7324/JAPS.2018.8610.
  • Topiar, M.; Sajfrtova, M.; Karban, J.; Sovova, H. Fractionation of Turmerones from Turmeric SFE Isolate Using Semi-Preparative Supercritical Chromatography Technique. J. Ind. Eng. Chem. 2019, 77, 223–229. DOI: 10.1016/j.jiec.2019.04.041.
  • Song, W.; Qiao, X.; Liang, W. F.; Ji, S.; Yang, L.; Wang, Y.; Xu, Y. W.; Yang, Y.; Guo, D.; Ye, M. Efficient Separation of Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin from Turmeric Using Supercritical Fluid Chromatography: From Analytical to Preparative Scale. J. Sep. Sci. 2015, 38, 3450–3453. DOI: 10.1002/jssc.201500686.
  • Ali, Z.; Saleem, M.; Atta, B. M.; Khan, S. S.; Hammad, G. Determination of Curcuminoid Content in Turmeric Using Fluorescence Spectroscopy. Spectrochim. Acta A. 2019, 213, 192–198. DOI: 10.1016/j.saa.2019.01.028.
  • Gad, H. A.; Bouzabata, A. Application of Chemometrics in Quality Control of Turmeric (Curcuma Longa) Based on Ultra-Violet, Fourier Transform-Infrared and 1H-NMR Spectroscopy. Food Chem. 2017, 237, 857–864. DOI: 10.1016/j.foodchem.2017.06.022.
  • Kar, S.; Tudu, B.; Bag, A. K.; Bandyopadhyay, R. Application of Near-Infrared Spectroscopy for the Detection of Metanil Yellow in Turmeric Powder. Food Anal. Meth. 2018, 11, 1291–1302. DOI: 10.1007/s12161-017-1106-9.
  • Dhakal, S.; Chao, K.; Qin, J.; Kim, M.; Schmidt, W.; Chan, D. Detection of Metanil Yellow Contamination in Turmeric Using FT Raman and FT-IR Spectroscopy. Proc. SPIE. 2016, 9864, 1–9. DOI: 10.1117/12.2223957.
  • Das, C.; Chakraborty, S.; Bera, N. K.; Acharya, K.; Chattopadhyay, D.; Karmakar, A.; Chattopadhyay, S. Impedimetric Approach for Estimating the Presence of Metanil Yellow in Turmeric Powder from Tunable Capacitance Measurement. Food Anal. Meth. 2019, 12, 1017–1027. DOI: 10.1007/s12161-018-01423-1.
  • Rayammarakkar, M.; Talasila, P. S.; Rao, V. B.; Kumar, T. V. S.; Sruthi, R.; Vishnu, G. R. D.; Prabhu, S.; Shankar, S. Individual and Simultaneous Electrochemical Determination of Metanil Yellow and Curcumin on Carbon Quantum Dots Based Glassy Carbon Electrode. Mater. Sci. Eng. C. 2018, 93, 21–27. DOI: 10.1016/j.msec.2018.07.055.
  • Sahu, P. K.; Rao, R. N.; Cecchi, T.; Swain, S.; Patro, C. S.; Panda, J. An Overview of Experimental Designs in HPLC Method Development and Validation. J. Pharm. Biomed. Anal. 2018, 147, 590–611. DOI: 10.1016/j.jpba.2017.05.006.
  • Sahu, P. K. Definition of System Suitability Test Limits on the Basis of Robustness Test Results. J. Anal. Bioanal. Tech. 2017, 8, 363–370. DOI: 10.4172/2155-9872.1000363.
  • Sahu, P. K.; Patro, C. S. Application of Chemometric Response Surface Methodology in Development and Optimization of a RP-HPLC Method for the Separation of Metaxalone and Its Base Hydrolytic Impurities. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 2444–2464. DOI: 10.1080/10826076.2013.840841.
  • BIS. Indian Standard, Spices, and Condiments-Turmeric, Whole and Ground-Specification (2nd Rev.); Bureau of Indian Standards: New Delhi, India, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.