898
Views
16
CrossRef citations to date
0
Altmetric
Articles

Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques

, , , & ORCID Icon

References

  • Cerniglia, C. E.; Pineiro, S. A.; Kotarski, S. F. An Update Discussion on the Current Assessment of the safety of Veterinary Antimicrobial Drug Residues in Food with Regard to Their Impact on the Human Intestinal Microbiome. Drug Test Anal. 2016, 8, 539–548. DOI: 10.1002/dta.2024.
  • Tang, H. P.; Ho, C.; Lai, S. S. High-Throughput Screening for Multi-Class Veterinary Drug Residues in Animal Muscle Using Liquid Chromatography/Tandem Mass Spectrometry with on-Line Solid-Phase Extraction. Rapid Commun. Mass Spectrom. 2006, 20, 2565–2572. DOI: 10.1002/rcm.2635.
  • Mookantsa, S. O.; Dube, S.; Nindi, M. M. Development and Application of a Dispersive Liquid-Liquid Microextraction Method for the Determination of Tetracyclines in Beef by Liquid Chromatography Mass Spectrometry. Talanta 2016, 148, 321–328. DOI: 10.1016/j.talanta.2015.11.006.
  • Rossi, R.; Saluti, G.; Moretti, S.; Diamanti, I.; Giusepponi, D.; Galarini, R. Multiclass Methods for the Analysis of Antibiotic Residues in Milk by Liquid Chromatography Coupled to Mass Spectrometry: A Review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 241–257. DOI: 10.1080/19440049.2017.1393107.
  • Gaudin, V. Advances in Biosensor Development for the Screening of Antibiotic Residues in Food Products of Animal Origin – A Comprehensive Review. Biosens. Bioelectron. 2017, 90, 363–377. DOI: 10.1016/j.bios.2016.12.005.
  • Le Bizec, B.; Pinel, G.; Antignac, J. P. Options for Veterinary Drug Analysis Using Mass Spectrometry. J. Chromatogr. A. 2009, 1216, 8016–8034. DOI: 10.1016/j.chroma.2009.07.007.
  • Zhou, J. W.; Zou, X. M.; Song, S. H.; Chen, G. H. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. J. Agric. Food Chem. 2018, 66, 1307–1319. DOI: 10.1021/acs.jafc.7b05119.
  • Ares, A. M.; Valverde, S.; Bernal, J. L.; Toribio, L.; Nozal, M. J.; Bernal, J. Determination of Flubendiamide in Honey at Trace Levels by Using Solid Phase Extraction and Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Food Chem. 2017, 232, 169–176. DOI: 10.1016/j.foodchem.2017.03.162.
  • Casado, N.; Perez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Evaluation of bi-Functionalized Mesoporous Silicas as Reversed Phase/Cation-Exchange Mixed-Mode Sorbents for Multi-Residue Solid Phase Extraction of Veterinary Drug Residues in Meat Samples. Talanta 2017, 165, 223–230. DOI: 10.1016/j.talanta.2016.12.057.
  • Ha, J.; Song, G.; Ai, L. F.; Li, J. C. Determination of Six Polyether Antibiotic Residues in Foods of Animal Origin by Solid Phase Extraction Combined with Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1017–1018, 187–194. DOI: 10.1016/j.jchromb.2016.01.057.
  • Zheng, W.; Abd El-Aty, A. M.; Kim, S.-K.; Choi, J.-M.; Park, D.-H.; Yoo, K.-H.; Kang, Y.-S.; Jeon, J.-S.; Hacımüftüoğlu, A.; Shim, J.-H.; Shin, H.-C. Development and Validation of a Solid-Phase Extraction Method Coupled with LC-MS/MS for the Simultaneous Determination of 16 Antibiotic Residues in Duck Meat. Biomed. Chromatogr. 2019, 33, e4501. DOI: 10.1002/bmc.4501.
  • Wittenberg, J. B.; Simon, K. A.; Wong, J. W. Targeted Multiresidue Analysis of Veterinary Drugs in Milk-Based Powders Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). J. Agric. Food Chem. 2017, 65, 7288–7293. DOI: 10.1021/acs.jafc.6b05263.
  • Yuan, Y.; Wang, M.; Jia, N.; Zhai, C.; Han, Y.; Yan, H. Graphene/Multi-Walled Carbon Nanotubes as an Adsorbent for Pipette-Tip Solid-Phase Extraction for the Determination of 17beta-Estradiol in Milk Products. J. Chromatogr. A. 2019, 1600, 73–79. DOI: 10.1016/j.chroma.2019.04.055.
  • Yan, Z.; Hu, B.; Li, Q.; Zhang, S.; Pang, J.; Wu, C. Facile Synthesis of Covalent Organic Framework Incorporated Electrospun Nanofiber and Application to Pipette Tip Solid Phase Extraction of Sulfonamides in Meat Samples. J. Chromatogr. A. 2019, 1584, 33–41. DOI: 10.1016/j.chroma.2018.11.039.
  • Wang, L.; Yan, H.; Yang, C.; Li, Z.; Qiao, F. Synthesis of Mimic Molecularly Imprinted Ordered Mesoporous Silica Adsorbent by Thermally Reversible Semicovalent Approach for Pipette-Tip Solid-Phase Extraction-Liquid Chromatography Fluorescence Determination of Estradiol in Milk. J. Chromatogr. A. 2016, 1456, 58–67. DOI: 10.1016/j.chroma.2016.06.010.
  • Mondal, S.; Xu, J.; Chen, G.; Huang, S.; Huang, C.; Yin, L.; Ouyang, G. Solid-Phase Microextraction of Antibiotics from Fish Muscle by Using MIL-101(Cr)NH2-Polyacrylonitrile Fiber and Their Identification by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta. 2019, 1047, 62–70. DOI: 10.1016/j.aca.2018.09.060.
  • Tang, Y.; Xu, J.; Chen, L.; Qiu, J.; Liu, Y.; Ouyang, G. Rapid in Vivo Determination of Fluoroquinolones in Cultured Puffer Fish (Takifugu obscurus) Muscle by Solid-Phase Microextraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2017, 175, 550–556. DOI: 10.1016/j.talanta.2017.07.066.
  • Chen, L.; Huang, X. Sensitive Monitoring of Fluoroquinolones in Milk and Honey Using Multiple Monolithic Fiber Solid-Phase Microextraction Coupled to Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2016, 64, 8684–8693. DOI: 10.1021/acs.jafc.6b03965.
  • Lan, H.; Pan, D.; Sun, Y.; Guo, Y.; Wu, Z. Thin Metal Organic Frameworks Coatings by Cathodic Electrodeposition for Solid-Phase Microextraction and Analysis of Trace Exogenous Estrogens in Milk. Anal. Chim. Acta. 2016, 937, 53–60. DOI: 10.1016/j.aca.2016.07.041.
  • Jiang, Y.; Ni, Y. Automated Headspace Solid-Phase Microextraction and on-Fiber Derivatization for the Determination of Clenbuterol in Meat Products by Gas Chromatography Coupled to Mass Spectrometry. J. Sep. Sci. 2015, 38, 418–425. DOI: 10.1002/jssc.201400634.
  • Khaled, A.; Gionfriddo, E.; Acquaro, V. Jr.; Singh, V.; Pawliszyn, J. Development and Validation of a Fully Automated Solid Phase Microextraction High Throughput Method for Quantitative Analysis of Multiresidue Veterinary Drugs in Chicken Tissue. Anal. Chim. Acta. 2019, 1056, 34–46. DOI: 10.1016/j.aca.2018.12.044.
  • Yu, C.; Hu, B. C18-Coated Stir Bar Sorptive Extraction Combined with High Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry for the Analysis of Sulfonamides in Milk and Milk Powder. Talanta 2012, 90, 77–84. DOI: 10.1016/j.talanta.2011.12.078.
  • Huang, X.; Qiu, N.; Yuan, D. Simple and Sensitive Monitoring of Sulfonamide Veterinary Residues in Milk by Stir Bar Sorptive Extraction Based on Monolithic Material and High Performance Liquid Chromatography Analysis. J. Chromatogr. A. 2009, 1216, 8240–8245. DOI: 10.1016/j.chroma.2009.05.031.
  • Huang, X.; Chen, L.; Chen, M.; Yuan, D.; Nong, S. Sensitive Monitoring of Penicillin Antibiotics in Milk and Honey Treated by Stir Bar Sorptive Extraction Based on Monolith and LC-Electrospray MS Detection. J. Sep. Sci. 2013, 36, 907–915. DOI: 10.1002/jssc.201200987.
  • Huang, X.; Chen, L.; Yuan, D. Development of Monolith-Based Stir Bar Sorptive Extraction and Liquid Chromatography Tandem Mass Spectrometry Method for Sensitive Determination of Ten Sulfonamides in Pork and Chicken Samples. Anal. Bioanal. Chem. 2013, 405, 6885–6889. DOI: 10.1007/s00216-013-7124-6.
  • Fan, W.; He, M.; Wu, X.; Chen, B.; Hu, B. Graphene Oxide/Polyethyleneglycol Composite Coated Stir Bar for Sorptive Extraction of Fluoroquinolones from Chicken Muscle and Liver. J. Chromatogr. A. 2015, 1418, 36–44. DOI: 10.1016/j.chroma.2015.09.052.
  • Kawaguchi, M.; Ito, R.; Saito, K.; Nakazawa, H. Novel Stir Bar Sorptive Extraction Methods for Environmental and Biomedical Analysis. J. Pharm. Biomed. Anal. 2006, 40, 500–508. DOI: 10.1016/j.jpba.2005.08.029.
  • Bogialli, S.; D’Ascenzo, G.; Di Corcia, A.; Innocenti, G.; Lagana, A.; Pacchiarotta, T. Monitoring Quinolone Antibacterial Residues in Bovine Tissues: Extraction with Hot Water and Liquid Chromatography Coupled to a Single- or Triple-Quadrupole Mass Spectrometer. Rapid Commun. Mass Spectrom. 2007, 21, 2833–2842. DOI: 10.1002/rcm.3155.
  • Tao, Y.; Zhu, F.; Chen, D.; Wei, H.; Pan, Y.; Wang, X.; Liu, Z.; Huang, L.; Wang, Y.; Yuan, Z. Evaluation of Matrix Solid-Phase Dispersion (MSPD) Extraction for Multi-Fenicols Determination in Shrimp and Fish by Liquid Chromatography-Electrospray Ionisation Tandem Mass Spectrometry. Food Chem. 2014, 150, 500–506. DOI: 10.1016/j.foodchem.2013.11.013.
  • Zhang, Y.; Xu, X.; Qi, X.; Gao, W.; Sun, S.; Li, X.; Jiang, C.; Yu, A.; Zhang, H.; Yu, Y. Determination of Sulfonamides in Livers Using Matrix Solid-Phase Dispersion Extraction High-Performance Liquid Chromatography. J. Sep. Sci. 2012, 35, 45–52. DOI: 10.1002/jssc.201100600.
  • Zhu, Y.; Yang, S.; Chen, G.; Xing, J. Single “Click” Synthesis of a Mixed-Mode Silica Sorbent and Application in Matrix Solid-Phase Dispersion Extraction of Beta-Agonists from Porcine Liver. J. Chromatogr. A. 2014, 1354, 101–108. DOI: 10.1016/j.chroma.2014.05.068.
  • Shen, Q.; Jin, R.; Xue, J.; Lu, Y.; Dai, Z. Analysis of Trace Levels of Sulfonamides in Fish Tissue Using Micro-Scale Pipette Tip-Matrix Solid-Phase Dispersion and Fast Liquid Chromatography Tandem Mass Spectrometry. Food Chem. 2016, 194, 508–515. DOI: 10.1016/j.foodchem.2015.08.050.
  • El Hawari, K.; Mokh, S.; Doumyati, S.; Al Iskandarani, M.; Verdon, E. Development and Validation of a Multiclass Method for the Determination of Antibiotic Residues in Honey Using Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 582–597. DOI: 10.1080/19440049.2016.1232491.
  • Schneider, M. J.; Lehotay, S. J.; Lightfield, A. R. Validation of a Streamlined Multiclass, Multiresidue Method for Determination of Veterinary Drug Residues in Bovine Muscle by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 4423–4435. DOI: 10.1007/s00216-014-8386-3.
  • Hou, X. L.; Wu, Y. L.; Yang, T.; Du, X. D. Multi-Walled Carbon Nanotubes-Dispersive Solid-Phase Extraction Combined with Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of 18 Sulfonamides in Pork. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 929, 107–115. DOI: 10.1016/j.jchromb.2013.04.014.
  • He, X.; Wang, G. N.; Yang, K.; Liu, H. Z.; Wu, X. J.; Wang, J. P. Magnetic Graphene Dispersive Solid Phase Extraction Combining High Performance Liquid Chromatography for Determination of Fluoroquinolones in Foods. Food Chem. 2017, 221, 1226–1231. DOI: 10.1016/j.foodchem.2016.11.035.
  • Li, D.; Li, T.; Wang, L.; Ji, S. A Polyvinyl Alcohol-Coated Core-Shell Magnetic Nanoparticle for the Extraction of Aminoglycoside Antibiotics Residues from Honey Samples. J. Chromatogr. A. 2018, 1581–1582, 1–7.
  • Cui, X.; Zhang, P.; Yang, X.; Yang, M.; Zhou, W.; Zhang, S.; Gao, H.; Lu, R. Beta-CD/ATP Composite Materials for Use in Dispersive Solid-Phase Extraction to Measure (Fluoro)Quinolone Antibiotics in Honey Samples. Anal. Chim. Acta. 2015, 878, 131–139.
  • Zhang, P.; Cui, X.; Yang, X.; Zhang, S.; Zhou, W.; Gao, H.; Lu, R. Dispersive Micro-Solid-Phase Extraction of Benzoylurea Insecticides in Honey Samples with a β-Cyclodextrin-Modified Attapulgite Composite as Sorbent. J. Sep. Sci. 2016, 39, 412–418. DOI: 10.1002/jssc.201500970.
  • Jia, X.; Zhao, P.; Ye, X.; Zhang, L.; Wang, T.; Chen, Q.; Hou, X. A Novel Metal-Organic Framework Composite MIL-101(Cr)@GO as an Efficient Sorbent in Dispersive Micro-Solid Phase Extraction Coupling with UHPLC-MS/MS for the Determination of Sulfonamides in Milk Samples. Talanta 2017, 169, 227–238. DOI: 10.1016/j.talanta.2016.08.086.
  • Wang, J.; Chen, Z.; Li, Z.; Yang, Y. Magnetic Nanoparticles Based Dispersive Micro-Solid-Phase Extraction as a Novel Technique for the Determination of Estrogens in Pork Samples. Food Chem. 2016, 204, 135–140. DOI: 10.1016/j.foodchem.2016.02.016.
  • Hu, S.; Zhao, M.; Xi, Y.; Mao, Q.; Zhou, X.; Chen, D.; Yan, P. Nontargeted Screening and Determination of Sulfonamides: A Dispersive Micro Solid-Phase Extraction Approach to the Analysis of Milk and Honey Samples Using Liquid Chromatography-High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 1984–1991. DOI: 10.1021/acs.jafc.6b05773.
  • Tsai, W. H.; Huang, T. C.; Huang, J. J.; Hsue, Y. H.; Chuang, H. Y. Dispersive Solid-Phase Microextraction Method for Sample Extraction in the Analysis of Four Tetracyclines in Water and Milk Samples by High-Performance Liquid Chromatography with Diode-Array Detection. J. Chromatogr. A. 2009, 1216, 2263–2269. DOI: 10.1016/j.chroma.2009.01.034.
  • Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Aguilera-Luiz, M. M.; Vidal, J. L.; Romero-Gonzalez, R.; Frenich, A. G. Multi-Residue Determination of Veterinary Drugs in Milk by Ultra-High-Pressure Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2008, 1205, 10–16. DOI: 10.1016/j.chroma.2008.07.066.
  • Wen, C. H.; Lin, S. L.; Fuh, M. R. Determination of Sulfonamides in Animal Tissues by Modified QuEChERS and Liquid Chromatography Tandem Mass Spectrometry. Talanta 2017, 164, 85–91. DOI: 10.1016/j.talanta.2016.11.006.
  • Stubbings, G.; Bigwood, T. The Development and Validation of a Multiclass Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Procedure for the Determination of Veterinary Drug Residues in Animal Tissue Using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) Approach. Anal. Chim. Acta. 2009, 637, 68–78. DOI: 10.1016/j.aca.2009.01.029.
  • Zhang, D.; Park, J. A.; Kim, S. K.; Cho, S. H.; Cho, S. M.; Yi, H.; Shim, J. H.; Kim, J. S.; Abd El-Aty, A. M.; Shin, H. C. Determination of Residual Levels of Naloxone, Yohimbine, Thiophanate, and Altrenogest in Porcine Muscle Using QuEChERS with Liquid Chromatography and Triple Quadrupole Mass Spectrometry. J. Sep. Sci. 2016, 39, 835–841. DOI: 10.1002/jssc.201501206.
  • Dominguez-Alvarez, J.; Mateos-Vivas, M.; Garcia-Gomez, D.; Rodriguez-Gonzalo, E.; Carabias-Martinez, R. Capillary Electrophoresis Coupled to Mass Spectrometry for the Determination of Anthelmintic Benzimidazoles in Eggs Using a QuEChERS with Preconcentration as Sample Treatment. J. Chromatogr. A. 2013, 1278, 166–174. DOI: 10.1016/j.chroma.2012.12.064.
  • Rahman, M. M.; Lee, H. S.; Abd El-Aty, A. M.; Kabir, M. H.; Chung, H. S.; Park, J. H.; Kim, M. R.; Kim, J. H.; Shin, H. C.; Shin, S. S.; et al. Determination of Endrin and Delta-Keto Endrin in Five Food Products of Animal Origin Using GC-muECD: A Modified QuEChERS Approach to Traditional Detection. Food Chem. 2018, 263, 59–66. DOI: 10.1016/j.foodchem.2018.04.099.
  • Shendy, A. H.; Al-Ghobashy, M. A.; Gad Alla, S. A.; Lotfy, H. M. Development and Validation of a Modified QuEChERS Protocol Coupled to LC-MS/MS for Simultaneous Determination of Multi-Class Antibiotic Residues in Honey. Food Chem. 2016, 190, 982–989. DOI: 10.1016/j.foodchem.2015.06.048.
  • Chang, G. R.; Chen, H. S.; Lin, F. Y. Analysis of Banned Veterinary Drugs and Herbicide Residues in Shellfish by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS) and Gas Chromatography-Tandem Mass Spectrometry (GC/MS/MS). Mar. Pollut. Bull. 2016, 113, 579–584. DOI: 10.1016/j.marpolbul.2016.08.080.
  • Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Multi-Residue Quantification of Veterinary Drugs in Milk with a Novel Extraction and Cleanup Technique: Salting out Supported Liquid Extraction (SOSLE). Anal. Chim. Acta. 2014, 820, 56–68. DOI: 10.1016/j.aca.2014.02.038.
  • Grande-Martinez, A.; Moreno-Gonzalez, D.; Arrebola-Liebanas, F. J.; Garrido-Frenich, A.; Garcia-Campana, A. M. Optimization of a Modified QuEChERS Method for the Determination of Tetracyclines in Fish Muscle by UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2018, 155, 27–32. DOI: 10.1016/j.jpba.2018.03.029.
  • Ibarra, I. S.; Miranda, J. M.; Rodriguez, J. A.; Nebot, C.; Cepeda, A. Magnetic Solid Phase Extraction Followed by High-Performance Liquid Chromatography for the Determination of Sulphonamides in Milk Samples. Food Chem. 2014, 157, 511–517. DOI: 10.1016/j.foodchem.2014.02.069.
  • Ye, Z.; Huang, Y.; Luo, Q.; Wang, L.; Huang, X. Preparation of Highly Fluorinated and Boron-Rich Adsorbent for Magnetic Solid-Phase Extraction of Fluoroquinolones in Water and Milk Samples. J. Chromatogr. A. 2019, 1601, 86–94. DOI: 10.1016/j.chroma.2019.06.020.
  • Ibarra, I. S.; Rodriguez, J. A.; Miranda, J. M.; Vega, M.; Barrado, E. Magnetic Solid Phase Extraction Based on Phenyl Silica Adsorbent for the Determination of Tetracyclines in Milk Samples by Capillary Electrophoresis. J. Chromatogr. A. 2011, 1218, 2196–2202. DOI: 10.1016/j.chroma.2011.02.046.
  • Ding, J.; Gao, Q.; Li, X. S.; Huang, W.; Shi, Z. G.; Feng, Y. Q. Magnetic Solid-Phase Extraction Based on Magnetic Carbon Nanotube for the Determination of Estrogens in Milk. J. Sep. Sci. 2011, 34, 2498–2504. DOI: 10.1002/jssc.201100323.
  • Liu, X.; Xie, S.; Ni, T.; Chen, D.; Wang, X.; Pan, Y.; Wang, Y.; Huang, L.; Cheng, G.; Qu, W.; et al. Magnetic Solid-Phase Extraction Based on Carbon Nanotubes for the Determination of Polyether Antibiotic and s-Triazine Drug Residues in Animal Food with LC-MS/MS. J. Sep. Sci. 2017, 40, 2416–2430. DOI: 10.1002/jssc.201700017.
  • Feng, Y.; Hu, X.; Zhao, F.; Zeng, B. Fe3O4/reduced graphene oxide-carbon nanotubes composite for the magnetic solid-phase extraction and HPLC determination of sulfonamides in milk. J. Sep. Sci. 2019, 42, 1058–1066. DOI: 10.1002/jssc.201801177.
  • Nasir, A. N. M.; Yahaya, N.; Zain, N. N. M.; Lim, V.; Kamaruzaman, S.; Saad, B.; Nishiyama, N.; Yoshida, N.; Hirota, Y. Thiol-Functionalized Magnetic Carbon Nanotubes for Magnetic Micro-Solid Phase Extraction of Sulfonamide Antibiotics from Milks and Commercial Chicken Meat Products. Food Chem. 2019, 276, 458–466. DOI: 10.1016/j.foodchem.2018.10.044.
  • Tolmacheva, V. V.; Apyari, V. V.; Furletov, A. A.; Dmitrienko, S. G.; Zolotov, Y. A. Facile Synthesis of Magnetic Hypercrosslinked Polystyrene and Its Application in the Magnetic Solid-Phase Extraction of Sulfonamides from Water and Milk Samples before Their HPLC Determination. Talanta 2016, 152, 203–210. DOI: 10.1016/j.talanta.2016.02.010.
  • Gao, Q.; Zheng, H. B.; Luo, D.; Ding, J.; Feng, Y. Q. Facile Synthesis of Magnetic One-Dimensional Polyaniline and Its Application in Magnetic Solid Phase Extraction for Fluoroquinolones in Honey Samples. Anal. Chim. Acta. 2012, 720, 57–62. DOI: 10.1016/j.aca.2011.12.067.
  • Hu, X. Z.; Chen, M. L.; Gao, Q.; Yu, Q. W.; Feng, Y. Q. Determination of Benzimidazole Residues in Animal Tissue Samples by Combination of Magnetic Solid-Phase Extraction with Capillary Zone Electrophoresis. Talanta 2012, 89, 335–341. DOI: 10.1016/j.talanta.2011.12.038.
  • Xia, L.; Liu, L.; Lv, X.; Qu, F.; Li, G.; You, J. Towards the Determination of Sulfonamides in Meat Samples: A Magnetic and Mesoporous Metal-Organic Framework as an Efficient Sorbent for Magnetic Solid Phase Extraction Combined with High-Performance Liquid Chromatography. J. Chromatogr. A. 2017, 1500, 24–31. DOI: 10.1016/j.chroma.2017.04.004.
  • Shang, Y.; Luo, J.; Wang, P.; Zhao, X.; Ye, C.; Guo, S. Magnetic Solid-Phase Extraction Based on β-Cyclodextrins/Acrylic Acid Modified Magnetic Gelatin for Determination of Moxidectin in Milk Samples. J. Anal. Meth. Chem. 2016, 2016, 7862152. DOI: 10.1155/2016/7862152.
  • Zhu, W. X.; Yang, J. Z.; Wang, Z. X.; Wang, C. J.; Liu, Y. F.; Zhang, L. Rapid Determination of 88 Veterinary Drug Residues in Milk Using Automated TurborFlow Online Clean-up Mode Coupled to Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2016, 148, 401–411. DOI: 10.1016/j.talanta.2015.10.037.
  • Kantiani, L.; Farre, M.; Sibum, M.; Postigo, C.; Lopez de Alda, M.; Barcelo, D. Fully Automated Analysis of Beta-Lactams in Bovine Milk by Online Solid Phase Extraction-Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Anal. Chem. 2009, 81, 4285–4295. DOI: 10.1021/ac9001386.
  • Lara, F. J.; Garcia-Campana, A. M.; Ales-Barrero, F.; Bosque-Sendra, J. M. In-Line Solid-Phase Extraction Preconcentration in Capillary Electrophoresis-Tandem Mass Spectrometry for the Multiresidue Detection of Quinolones in Meat by Pressurized Liquid Extraction. Electrophoresis. 2008, 29, 2117–2125. DOI: 10.1002/elps.200700666.
  • Xu, Z.; Song, C.; Hu, Y.; Li, G. Molecularly Imprinted Stir Bar Sorptive Extraction Coupled with High Performance Liquid Chromatography for Trace Analysis of Sulfa Drugs in Complex Samples. Talanta 2011, 85, 97–103. DOI: 10.1016/j.talanta.2011.03.041.
  • Haginaka, J. Molecularly Imprinted Polymers as Affinity-Based Separation Media for Sample Preparation. J. Sep. Sci. 2009, 32, 1548–1565. DOI: 10.1002/jssc.200900085.
  • Rodriguez, E.; Moreno-Bondi, M. C.; Marazuela, M. D. Multiresidue Determination of Fluoroquinolone Antimicrobials in Baby Foods by Liquid Chromatography. Food Chem. 2011, 127, 1354–1360. DOI: 10.1016/j.foodchem.2011.01.098.
  • He, J. X.; Wang, S.; Fang, G. Z.; Zhu, H. P.; Zhang, Y. Molecularly Imprinted Polymer Online Solid-Phase Extraction Coupled with High-Performance Liquid chromatography-UV for the Determination of Three Sulfonamides in Pork and Chicken. J. Agric. Food Chem. 2008, 56, 2919–2925. DOI: 10.1021/jf703680q.
  • Moreno-Gonzalez, D.; Lara, F. J.; Gamiz-Gracia, L.; Garcia-Campana, A. M. Molecularly Imprinted Polymer as in-Line Concentrator in Capillary Electrophoresis Coupled with Mass Spectrometry for the Determination of Quinolones in Bovine Milk Samples. J. Chromatogr. A. 2014, 1360, 1–8. DOI: 10.1016/j.chroma.2014.07.049.
  • Tang, T.; Wei, F.; Wang, X.; Ma, Y.; Song, Y.; Ma, Y.; Song, Q.; Xu, G.; Cen, Y.; Hu, Q. Determination of Semicarbazide in Fish by Molecularly Imprinted Stir Bar Sorptive Extraction Coupled with High Performance Liquid Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1076, 8–14. DOI: 10.1016/j.jchromb.2018.01.003.
  • Tang, J.; Wang, J.; Shi, S.; Hu, S.; Yuan, L. Determination of beta-Agonist Residues in Animal-Derived Food by a Liquid Chromatography-Tandem Mass Spectrometric Method Combined with Molecularly Imprinted Stir Bar Sorptive Extraction. J. Anal. Meth. Chem. 2018, 2018, 9053561. DOI: 10.1155/2018/9053561.
  • Xu, Z.; Hu, Y.; Hu, Y.; Li, G. Investigation of Ractopamine Molecularly Imprinted Stir Bar Sorptive Extraction and Its Application for Trace Analysis of beta2-Agonists in Complex Samples. J. Chromatogr. A. 2010, 1217, 3612–3618. DOI: 10.1016/j.chroma.2010.03.046.
  • Liu, H.; Qiao, L.; Gan, N.; Lin, S.; Cao, Y.; Hu, F.; Wang, J.; Chen, Y. Electro-Deposited Poly-Luminol Molecularly Imprinted Polymer Coating on Carboxyl Graphene for Stir Bar Sorptive Extraction of Estrogens in Milk. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1027, 50–56. DOI: 10.1016/j.jchromb.2016.05.022.
  • Qiao, L.; Gan, N.; Wang, J.; Gao, H.; Hu, F.; Wang, H.; Li, T. Novel Molecularly Imprinted Stir Bar Sorptive Extraction Based on an 8-Electrode Array for Preconcentration of Trace Exogenous Estrogens in Meat. Anal. Chim. Acta. 2015, 853, 342–350. DOI: 10.1016/j.aca.2014.10.041.
  • Fan, W.; Gao, M.; He, M.; Chen, B.; Hu, B. Cyromazine Imprinted Polymers for Selective Stir Bar Sorptive Extraction of Melamine in Animal Feed and Milk Samples. Analyst 2015, 140, 4057–4067. DOI: 10.1039/C5AN00325C.
  • Song, X.; Zhou, T.; Li, J.; Su, Y.; Xie, J.; He, L. Determination of Macrolide Antibiotics Residues in Pork Using Molecularly Imprinted Dispersive Solid-Phase Extraction Coupled with LC-MS/MS. J. Sep. Sci. 2018, 41, 1138–1148. DOI: 10.1002/jssc.201700973.
  • Hu, Y.; Liu, R.; Li, Y.; Li, G. Investigation of Ractopamine-Imprinted Polymer for Dispersive Solid-Phase Extraction of Trace Beta-Agonists in Pig Tissues. J. Sep. Sci. 2010, 33, 2017–2025. DOI: 10.1002/jssc.201000063.
  • Yan, H.; Qiao, F.; Row, K. H. Molecularly Imprinted-Matrix Solid-Phase Dispersion for Selective Extraction of Five Fluoroquinolones in Eggs and Tissue. Anal. Chem. 2007, 79, 8242–8248. DOI: 10.1021/ac070644q.
  • Guo, L.; Guan, M.; Zhao, C.; Zhang, H. Molecularly Imprinted Matrix Solid-Phase Dispersion for Extraction of Chloramphenicol in Fish Tissues Coupled with High-Performance Liquid Chromatography Determination. Anal. Bioanal. Chem. 2008, 392, 1431–1438. DOI: 10.1007/s00216-008-2454-5.
  • Gañán, J.; Gallego-Picó, A.; Garcinuño, R. M.; Fernández-Hernando, P.; Morante, S.; Sierra, I.; Durand, J. S. Development of a Molecularly Imprinted Polymer-Matrix Solid-Phase Dispersion Method for Selective Determination of β-Estradiol as Anabolic Growth Promoter in Goat Milk. Anal. Bioanal. Chem. 2012, 403, 3025–3029. DOI: 10.1007/s00216-012-5794-0.
  • Wang, G. N.; Zhang, L.; Song, Y. P.; Liu, J. X.; Wang, J. P. Application of Molecularly Imprinted Polymer Based Matrix Solid Phase Dispersion for Determination of Fluoroquinolones, Tetracyclines and Sulfonamides in Meat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1065–1066, 104–111. DOI: 10.1016/j.jchromb.2017.09.034.
  • Qiao, F.; Du, J. Rapid Screening of Clenbuterol Hydrochloride in Chicken Samples by Molecularly Imprinted Matrix Solid-Phase Dispersion Coupled with Liquid Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 923–924, 136–140. DOI: 10.1016/j.jchromb.2013.02.016.
  • Chen, L.; Liu, J.; Zeng, Q.; Wang, H.; Yu, A.; Zhang, H.; Ding, L. Preparation of Magnetic Molecularly Imprinted Polymer for the Separation of Tetracycline Antibiotics from Egg and Tissue Samples. J. Chromatogr. A. 2009, 1216, 3710–3719. DOI: 10.1016/j.chroma.2009.02.044.
  • Wang, H.; Liu, Y.; Wei, S.; Yao, S.; Zhang, J.; Huang, H. Selective Extraction and Determination of Fluoroquinolones in Bovine Milk Samples with Montmorillonite Magnetic Molecularly Imprinted Polymers and Capillary Electrophoresis. Anal. Bioanal. Chem. 2016, 408, 589–598. DOI: 10.1007/s00216-015-9140-1.
  • Zheng, H. B.; Mo, J. Z.; Zhang, Y.; Gao, Q.; Ding, J.; Yu, Q. W.; Feng, Y. Q. Facile Synthesis of Magnetic Molecularly Imprinted Polymers and Its Application in Magnetic Solid Phase Extraction for Fluoroquinolones in Milk Samples. J. Chromatogr. A. 2014, 1329, 17–23. DOI: 10.1016/j.chroma.2013.12.083.
  • Anirudhan, T. S.; Christa, J.; Deepa, J. R. Extraction of Melamine from Milk Using a Magnetic Molecularly Imprinted Polymer. Food Chem. 2017, 227, 85–92. DOI: 10.1016/j.foodchem.2016.12.090.
  • Imamoglu, H.; Oktem Olgun, E. Analysis of Veterinary Drug and Pesticide Residues Using the Ethyl Acetate Multiclass/Multiresidue Method in Milk by Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Meth. Chem. 2016, 2016, 2170165. DOI: 10.1155/2016/2170165.
  • Li, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass Analysis of 25 Veterinary Drugs in Milk by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2018, 257, 259–264. DOI: 10.1016/j.foodchem.2018.02.144.
  • Hernandez-Mesa, M.; Carbonell-Rozas, L.; Cruces-Blanco, C.; Garcia-Campana, A. M. A High-Throughput UHPLC Method for the Analysis of 5-Nitroimidazole Residues in Milk Based on Salting-out Assisted Liquid-Liquid Extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1068–1069, 125–130. DOI: 10.1016/j.jchromb.2017.10.016.
  • Hernandez-Mesa, M.; Cruces-Blanco, C.; Garcia-Campana, A. M. Simple and Rapid Determination of 5-Nitroimidazoles and Metabolites in Fish Roe Samples by Salting-out Assisted Liquid-Liquid Extraction and UHPLC-MS/MS. Food Chem. 2018, 252, 294–302. DOI: 10.1016/j.foodchem.2018.01.101.
  • Tejada-Casado, C.; Lara, F. J.; Garcia-Campana, A. M.; Del Olmo-Iruela, M. Ultra-High Performance Liquid Chromatography with Fluorescence Detection following Salting-out Assisted Liquid-Liquid Extraction for the Analysis of Benzimidazole Residues in Farm Fish Samples. J. Chromatogr. A. 2018, 1543, 58–66. DOI: 10.1016/j.chroma.2018.02.042.
  • Tejada-Casado, C.; Del Olmo-Iruela, M.; Garcia-Campana, A. M.; Lara, F. J. Green and Simple Analytical Method to Determine Benzimidazoles in Milk Samples by Using Salting-out Assisted Liquid-Liquid Extraction and Capillary Liquid Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1091, 46–52. DOI: 10.1016/j.jchromb.2018.05.024.
  • Moreno-Gonzalez, D.; Rodriguez-Ramirez, R.; Del Olmo-Iruela, M.; Garcia-Campana, A. M. Validation of a New Method Based on Salting-out Assisted Liquid-Liquid Extraction and UHPLC-MS/MS for the Determination of Betalactam Antibiotics in Infant Dairy Products. Talanta 2017, 167, 493–498. DOI: 10.1016/j.talanta.2017.02.045.
  • Xu, H.; Mi, H. Y.; Guan, M. M.; Shan, H. Y.; Fei, Q.; Huan, Y. F.; Zhang, Z. Q.; Feng, G. D. Residue Analysis of Tetracyclines in Milk by HPLC Coupled with Hollow Fiber Membranes-Based Dynamic Liquid-Liquid Micro-Extraction. Food Chem. 2017, 232, 198–202. DOI: 10.1016/j.foodchem.2017.04.021.
  • Tao, Y.; Chen, D.; Yu, G.; Yu, H.; Pan, Y.; Wang, Y.; Huang, L.; Yuan, Z. Simultaneous Determination of Lincomycin and Spectinomycin Residues in Animal Tissues by Gas Chromatography-Nitrogen Phosphorus Detection and Gas Chromatography-Mass Spectrometry with Accelerated Solvent Extraction. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2011, 28, 145–154. DOI: 10.1080/19440049.2010.538440.
  • Yu, H.; Tao, Y.; Le, T.; Chen, D.; Ishsan, A.; Liu, Y.; Wang, Y.; Yuan, Z. Simultaneous Determination of Amitraz and Its Metabolite Residue in Food Animal Tissues by Gas Chromatography-Electron Capture Detector and Gas Chromatography-Mass Spectrometry with Accelerated Solvent Extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 1746–1752. DOI: 10.1016/j.jchromb.2010.04.034.
  • Yu, H.; Tao, Y.; Chen, D.; Pan, Y.; Liu, Z.; Wang, Y.; Huang, L.; Dai, M.; Peng, D.; Wang, X.; et al. Simultaneous Determination of Fluoroquinolones in Foods of Animal Origin by a High Performance Liquid Chromatography and a Liquid Chromatography Tandem Mass Spectrometry with Accelerated Solvent Extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 885–886, 150–159. DOI: 10.1016/j.jchromb.2011.12.016.
  • Font, G.; Juan-Garcia, A.; Pico, Y. Pressurized Liquid Extraction Combined with Capillary Electrophoresis-Mass Spectrometry as an Improved Methodology for the Determination of Sulfonamide Residues in Meat. J. Chromatogr. A. 2007, 1159, 233–241. DOI: 10.1016/j.chroma.2007.03.062.
  • Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Rezaee Moghadam, N.; Arefhosseini, S. R.; Javadi, A.; Lotfipur, F.; Ansarin, M.; Tamizi, E.; Nemati, M. Determination of Enrofloxacin and Ciprofloxacin Residues in Five Different Kinds of Chicken Tissues by Dispersive Liquid-Liquid Microextraction Coupled with HPLC. Iran. J. Pharm. Res. 2018, 17, 1182–1190.
  • Moema, D.; Nindi, M. M.; Dube, S. Development of a Dispersive Liquid-Liquid Microextraction Method for the Determination of Fluoroquinolones in Chicken Liver by High Performance Liquid Chromatography. Anal. Chim. Acta. 2012, 730, 80–86. DOI: 10.1016/j.aca.2011.11.036.
  • Tejada-Casado, C.; Moreno-Gonzalez, D.; Lara, F. J.; Garcia-Campana, A. M.; Del Olmo-Iruela, M. Determination of Benzimidazoles in Meat Samples by Capillary Zone Electrophoresis Tandem Mass Spectrometry following Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 2017, 1490, 212–219. DOI: 10.1016/j.chroma.2017.02.023.
  • Wang, H.; Hu, L.; Li, W.; Lu, R.; Zhang, S.; Zhou, W.; Gao, H. A Rapid and Simple Pretreatment Method for Benzoylurea Insecticides in Honey Samples Using in-Syringe Dispersive Liquid-Liquid Microextraction Based on the Direct Solidification of Ionic Liquids. J. Chromatogr. A. 2016, 1471, 60–67. DOI: 10.1016/j.chroma.2016.10.027.
  • Timofeeva, I.; Timofeev, S.; Moskvin, L.; Bulatov, A. A Dispersive Liquid-Liquid Microextraction Using a Switchable Polarity Dispersive Solvent. Automated HPLC-FLD Determination of Ofloxacin in Chicken Meat. Anal. Chim. Acta. 2017, 949, 35–42. DOI: 10.1016/j.aca.2016.11.018.
  • Fan, C.; Li, N.; Cao, X. Determination of Chlorophenols in Honey Samples Using in-Situ Ionic Liquid-Dispersive Liquid-Liquid Microextraction as a Pretreatment Method Followed by High-Performance Liquid Chromatography. Food Chem. 2015, 174, 446–451. DOI: 10.1016/j.foodchem.2014.11.050.
  • Tian, H.; Bai, X.; Xu, J. Simultaneous Determination of Simazine, Cyanazine, and Atrazine in Honey Samples by Dispersive Liquid-Liquid Microextraction Combined with High-Performance Liquid Chromatography. J. Sep. Sci. 2017, 40, 3882–3888. DOI: 10.1002/jssc.201700498.
  • Guo, F.; Li, Q. X.; Alcantara-Licudine, J. P. Na4EDTA-Assisted Sub-/Supercritical Fluid Extraction Procedure for Quantitative Recovery of Polar Analytes in Soil. Anal. Chem. 1999, 71, 1309–1315. DOI: 10.1021/ac9810157.
  • Choi, J. H.; Mamun, M. I.; Abd El-Aty, A. M.; Kim, K. T.; Koh, H. B.; Shin, H. C.; Kim, J. S.; Lee, K. B.; Shim, J. H. Inert Matrix and Na 4 EDTA Improve the Supercritical Fluid Extraction Efficiency of Fluoroquinolones for HPLC Determination in Pig Tissues. Talanta 2009, 78, 348–357. DOI: 10.1016/j.talanta.2008.11.021.
  • Shim, J. H.; Shen, J. Y.; Kim, M. R.; Lee, C. J.; Kim, I. S. Determination of the Fluoroquinolone Enrofloxacin in Edible Chicken Muscle by Supercritical Fluid Extraction and Liquid Chromatography with Fluorescence Detection. J. Agric. Food Chem. 2003, 51, 7528–7532. DOI: 10.1021/jf0346511.
  • Shim, J. H.; Lee, M. H.; Kim, M. R.; Lee, C. J.; Kim, I. S. Simultaneous Measurement of Fluoroquinolones in Eggs by a Combination of Supercritical Fluid Extraction and High Pressure Liquid Chromatography. Biosci. Biotechnol. Biochem. 2003, 67, 1342–1348. DOI: 10.1271/bbb.67.1342.
  • Lin, Q. B.; Zhao, X. T.; Song, H.; Pan, Y. L. Immunoaffinity Chromatography Purification and Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Determination of Four Beta-Agonists in Beef. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2012, 29, 935–941. DOI: 10.1080/19440049.2012.666679.
  • Zhao, X. T.; Lin, Q. B.; Song, H.; Pan, Y. L.; Wang, X. Development of an Immunoaffinity Chromatography Purification and Ultra Performance Liquid Chromatography Tandem Mass Spectrometry Method for Determination of 12 Sulfonamides in Beef and Milk. J. Agric. Food Chem. 2011, 59, 9800–9805. DOI: 10.1021/jf202705d.
  • Luo, P.; Chen, X.; Liang, C.; Kuang, H.; Lu, L.; Jiang, Z.; Wang, Z.; Li, C.; Zhang, S.; Shen, J. Simultaneous Determination of Thiamphenicol, Florfenicol and Florfenicol Amine in Swine Muscle by Liquid Chromatography-Tandem Mass Spectrometry with Immunoaffinity Chromatography Clean-up. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 207–212. DOI: 10.1016/j.jchromb.2009.10.002.
  • Wang, Q.; Zhao, H.; Xi, C.; Wang, G.; Chen, D.; Ding, S. Determination of Chloramphenicol and Zeranols in Pig Muscle by Immunoaffinity Column Clean-up and LC-MS/MS Analysis. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 1–1186. DOI: 10.1080/19440049.2014.919412.
  • Mackie, J.; Marley, E.; Donnelly, C. Immunoaffinity Column Cleanup with LC/MS/MS for the Determination of Chloramphenicol in Honey and Prawns: Single-Laboratory Validation. J. AOAC Int. 2013, 96, 910–916. DOI: 10.5740/jaoacint.12-320.
  • Zhang, X.; Wang, C.; Yang, L.; Zhang, W.; Lin, J.; Li, C. Determination of Eight Quinolones in Milk Using Immunoaffinity Microextraction in a Packed Syringe and Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2017, 1064, 68–74. DOI: 10.1016/j.jchromb.2017.09.004.
  • Chico, J.; Rubies, A.; Centrich, F.; Companyo, R.; Prat, M. D.; Granados, M. Use of Gel Permeation Chromatography for Clean-up in the Analysis of Coccidiostats in Eggs by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 4777–4786. DOI: 10.1007/s00216-013-6896-z.
  • Kaklamanos, G.; Theodoridis, G.; Dabalis, T. Gel Permeation Chromatography Clean-up for the Determination of Gestagens in Kidney Fat by Liquid Chromatography-Tandem Mass Spectrometry and Validation according to 2002/657/EC. J. Chromatogr. A. 2009, 1216, 8067–8071. DOI: 10.1016/j.chroma.2009.04.050.
  • Ai, L.; Sun, H.; Wang, F.; Chen, R.; Guo, C. Determination of Diclazuril, Toltrazuril and Its Two Metabolites in Poultry Tissues and Eggs by Gel Permeation Chromatography-Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1757–1763. DOI: 10.1016/j.jchromb.2011.04.021.
  • Abuin, S.; Companyo, R.; Centrich, F.; Rubies, A.; Prat, M. D. Analysis of Thyreostatic Drugs in Thyroid Samples by Liquid Chromatography Tandem Mass Spectrometry: Comparison of Two Sample Treatment Strategies. J. Chromatogr. A. 2008, 1207, 17–23. DOI: 10.1016/j.chroma.2008.08.018.
  • Karageorgou, E. G.; Samanidou, V. F.; Papadoyannis, I. N. Ultrasound-Assisted Matrix Solid Phase Dispersive Extraction for the Simultaneous Analysis of Beta-Lactams (Four Penicillins and Eight Cephalosporins) in Milk by High Performance Liquid Chromatography with Photodiode Array Detection. J. Sep. Sci. 2012, 35, 2599–2607. DOI: 10.1002/jssc.201200514.
  • Zhou, J.; Xue, X.; Chen, F.; Zhang, J.; Li, Y.; Wu, L.; Chen, L.; Zhao, J. Simultaneous Determination of Seven Fluoroquinolones in Royal Jelly by Ultrasonic-Assisted Extraction and Liquid Chromatography with Fluorescence Detection. J. Sep. Sci. 2009, 32, 955–964. DOI: 10.1002/jssc.200800545.
  • Xu, H.; Chen, L.; Sun, L.; Sun, X.; Du, X.; Wang, J.; Wang, T.; Zeng, Q.; Wang, H.; Xu, Y.; et al. Microwave-Assisted Extraction and in Situ Clean-up for the Determination of Fluoroquinolone Antibiotics in Chicken Breast Muscle by LC-MS/MS. J. Sep. Sci. 2011, 34, 142–149. DOI: 10.1002/jssc.201000365.
  • Liu, B.; Yan, H.; Qiao, F.; Geng, Y. Determination of Clenbuterol in Porcine Tissues Using Solid-Phase Extraction Combined with Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction and HPLC-UV Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 90–94. DOI: 10.1016/j.jchromb.2010.11.017.
  • Huang, P.; Zhao, P.; Dai, X.; Hou, X.; Zhao, L.; Liang, N. Trace Determination of Antibacterial Pharmaceuticals in Fishes by Microwave-Assisted Extraction and Solid-Phase Purification Combined with Dispersive Liquid-Liquid Microextraction Followed by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016, 1011, 136–144. DOI: 10.1016/j.jchromb.2015.12.059.
  • Li, X.; Yu, H.; Peng, R.; Gan, P. Determination of 19 Sulfonamides Residues in Pork Samples by Combining QuEChERS with Dispersive Liquid-Liquid Microextraction Followed by UHPLC-MS/MS. J. Sep. Sci. 2017, 40, 1377–1384. DOI: 10.1002/jssc.201601034.
  • Yan, H.; Wang, H.; Qiao, J.; Yang, G. Molecularly Imprinted Matrix Solid-Phase Dispersion Combined with Dispersive Liquid-Liquid Microextraction for the Determination of Four Sudan Dyes in Egg Yolk. J. Chromatogr. A. 2011, 1218, 2182–2188. DOI: 10.1016/j.chroma.2011.02.042.
  • Yao, K.; Zhang, W.; Yang, L.; Gong, J.; Li, L.; Jin, T.; Li, C. Determination of 11 Quinolones in Bovine Milk Using Immunoaffinity Stir Bar Sorptive Microextraction and Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1003, 67–73. DOI: 10.1016/j.jchromb.2015.09.008.
  • Xu, X.; Liang, F.; Shi, J.; Zhao, X.; Liu, Z.; Wu, L.; Song, Y.; Zhang, H.; Wang, Z. Determination of Hormones in Milk by Hollow Fiber-Based Stirring Extraction Bar Liquid-Liquid Microextraction Gas Chromatography Mass Spectrometry. Anal. Chim. Acta. 2013, 790, 39–46. DOI: 10.1016/j.aca.2013.06.035.
  • Ashwin, H.; Stead, S.; Caldow, M.; Sharman, M.; Stark, J.; de Rijk, A.; Keely, B. J. A Rapid Microbial Inhibition-Based Screening Strategy for Fluoroquinolone and Quinolone Residues in Foods of Animal Origin. Anal. Chim. Acta. 2009, 637, 241–246. DOI: 10.1016/j.aca.2008.08.038.
  • Appicciafuoco, B.; Dragone, R.; Frazzoli, C.; Bolzoni, G.; Mantovani, A.; Ferrini, A. M. Microbial Screening for Quinolones Residues in Cow Milk by Bio-Optical Method. J. Pharm. Biomed. Anal. 2015, 106, 179–185. DOI: 10.1016/j.jpba.2014.11.037.
  • Kozarova, I.; Janosova, J.; Mate, D.; Tkacikova, S. Evaluation of Three Different Microbial Inhibition Tests for the Detection of Sulphamethazine Residues in the Edible Tissues of Rabbit. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2009, 26, 978–987.
  • Dang, P. K.; Degand, G.; Danyi, S.; Pierret, G.; Delahaut, P.; Ton, V. D.; Maghuin-Rogister, G.; Scippo, M. L. Validation of a Two-Plate Microbiological Method for Screening Antibiotic Residues in Shrimp Tissue. Anal. Chim. Acta. 2010, 672, 30–39. DOI: 10.1016/j.aca.2010.03.055.
  • Al-Mazeedi, H. M.; Abbas, A. B.; Alomirah, H. F.; Al-Jouhar, W. Y.; Al-Mufty, S. A.; Ezzelregal, M. M.; Al-Owaish, R. A. Screening for Tetracycline Residues in Food Products of Animal Origin in the State of Kuwait Using Charm II Radio-Immunoassay and LC/MS/MS Methods. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 291–301. DOI: 10.1080/19440040903331027.
  • Mor, F.; Sahindokuyucu Kocasari, F.; Ozdemir, G.; Oz, B. Determination of Sulphonamide Residues in Cattle Meats by the Charm-II System and Validation with High Performance Liquid Chromatography with Fluorescence Detection. Food Chem. 2012, 134, 1645–1649. DOI: 10.1016/j.foodchem.2012.03.049.
  • Zhang, Y.; Lu, S.; Liu, W.; Zhao, C.; Xi, R. Preparation of anti-Tetracycline Antibodies and Development of an Indirect Heterologous Competitive Enzyme-Linked Immunosorbent Assay to Detect Residues of Tetracycline in Milk. J. Agric. Food Chem. 2007, 55, 211–218. DOI: 10.1021/jf062627s.
  • Wang, C.; Wang, Z.; Jiang, W.; Mi, T.; Shen, J. A Monoclonal Antibody-Based ELISA for Multiresidue Determination of Avermectins in Milk. Molecules 2012, 17, 7401–7414. DOI: 10.3390/molecules17067401.
  • Jiang, W.; Wang, Z.; Beier, R. C.; Jiang, H.; Wu, Y.; Shen, J. Simultaneous Determination of 13 Fluoroquinolone and 22 Sulfonamide Residues in Milk by a Dual-Colorimetric Enzyme-Linked Immunosorbent Assay. Anal. Chem. 2013, 85, 1995–1999. DOI: 10.1021/ac303606h.
  • He, J.; Wu, N.; Luo, P.; Guo, P.; Qu, J.; Zhang, S.; Zou, X.; Wu, F.; Xie, H.; Wang, C.; et al. Development of a Heterologous Enzyme-Linked Immunosorbent Assay for the Detection of Clindamycin and Lincomycin Residues in Edible Animal Tissues. Meat Sci. 2017, 125, 137–142. DOI: 10.1016/j.meatsci.2016.11.024.
  • Ni, T.; Peng, D.; Wang, Y.; Pan, Y.; Xie, S.; Chen, D.; Wang, Y.; Tao, Y.; Yuan, Z. Development of a Broad-Spectrum Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Multi-Residue Detection of Avermectins in Edible Animal Tissues and Milk. Food Chem. 2019, 286, 234–240. DOI: 10.1016/j.foodchem.2019.02.011.
  • Chen, L.; Wang, Z.; Ferreri, M.; Su, J.; Han, B. Cephalexin Residue Detection in Milk and Beef by ELISA and Colloidal Gold Based One-Step Strip Assay. J. Agric. Food Chem. 2009, 57, 4674–4679. DOI: 10.1021/jf900433d.
  • Chen, Y.; Wang, Z.; Wang, Z.; Tang, S.; Zhu, Y.; Xiao, X. Rapid Enzyme-Linked Immunosorbent Assay and Colloidal Gold Immunoassay for Kanamycin and Tobramycin in Swine Tissues. J. Agric. Food Chem. 2008, 56, 2944–2952. DOI: 10.1021/jf703602b.
  • Jiang, J.; Wang, Z.; Zhang, H.; Zhang, X.; Liu, X.; Wang, S. Monoclonal Antibody-Based ELISA and Colloidal Gold Immunoassay for Detecting 19-Nortestosterone Residue in Animal Tissues. J. Agric. Food Chem. 2011, 59, 9763–9769. DOI: 10.1021/jf2012437.
  • Wu, J. X.; Zhang, S. E.; Zhou, X. P. Monoclonal Antibody-Based ELISA and Colloidal Gold-Based Immunochromatographic Assay for Streptomycin Residue Detection in Milk and Swine Urine. J. Zhejiang Univ. Sci. B. 2010, 11, 52–60. DOI: 10.1631/jzus.B0900215.
  • Liu, N.; Gao, Z.; Ma, H.; Su, P.; Ma, X.; Li, X.; Ou, G. Simultaneous and Rapid Detection of Multiple Pesticide and Veterinary Drug Residues by Suspension Array Technology. Biosens. Bioelectron. 2013, 41, 710–716. DOI: 10.1016/j.bios.2012.09.050.
  • Liu, N.; Su, P.; Gao, Z.; Zhu, M.; Yang, Z.; Pan, X.; Fang, Y.; Chao, F. Simultaneous Detection for Three Kinds of Veterinary Drugs: Chloramphenicol, Clenbuterol and 17-Beta-Estradiol by High-Throughput Suspension Array Technology. Anal. Chim. Acta. 2009, 632, 128–134. DOI: 10.1016/j.aca.2008.10.061.
  • Panzenhagen, P. H.; Aguiar, W. S.; Gouvêa, R.; de Oliveira, A. M.; Barreto, F.; Pereira, V. L.; Aquino, M. H. Investigation of Enrofloxacin Residues in Broiler Tissues Using ELISA and LC-MS/MS. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2016, 33, 639–643. DOI: 10.1080/19440049.2016.1143566.
  • Chen, M.; Wen, K.; Tao, X.; Ding, S.; Xie, J.; Yu, X.; Li, J.; Xia, X.; Wang, Y.; Xie, S.; et al. A Novel Multiplexed Fluorescence Polarisation Immunoassay Based on a Recombinant bi-Specific Single-Chain Diabody for Simultaneous Detection of Fluoroquinolones and Sulfonamides in Milk. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 1959–1967. DOI: 10.1080/19440049.2014.976279.
  • Mi, T.; Wang, Z.; Eremin, S. A.; Shen, J.; Zhang, S. Simultaneous Determination of Multiple (Fluoro)Quinolone Antibiotics in Food Samples by a One-Step Fluorescence Polarization Immunoassay. J. Agric. Food Chem. 2013, 61, 9347–9355. DOI: 10.1021/jf403972r.
  • Beloglazova, N. V.; Shmelin, P. S.; Eremin, S. A. Sensitive Immunochemical Approaches for Quantitative (FPIA) and Qualitative (Lateral Flow Tests) Determination of Gentamicin in Milk. Talanta 2016, 149, 217–224. DOI: 10.1016/j.talanta.2015.11.060.
  • Zhang, H.; Mi, T.; Khan, O. Y.; Sheng, Y.; Eremin, S. A.; Beier, R. C.; Zhang, S.; Shen, J.; Wang, Z. Fluorescence Polarization Immunoassay Using IgY Antibodies for Detection of Valnemulin in Swine Tissue. Anal. Bioanal. Chem. 2015, 407, 7843–7848. DOI: 10.1007/s00216-015-8948-z.
  • Peippo, P.; Hagren, V.; Lovgren, T.; Tuomola, M. Rapid Time-Resolved Fluoroimmunoassay for the Screening of Narasin and Salinomycin Residues in Poultry and Eggs. J. Agric. Food Chem. 2004, 52, 1824–1828. DOI: 10.1021/jf030716o.
  • Shen, J.; Zhang, Z.; Yao, Y.; Shi, W.; Liu, Y.; Zhang, S. A Monoclonal Antibody-Based Time-Resolved Fluoroimmunoassay for Chloramphenicol in Shrimp and Chicken Muscle. Anal. Chim. Acta. 2006, 575, 262–266. DOI: 10.1016/j.aca.2006.05.087.
  • Bacigalupo, M. A.; Meroni, G.; Secundo, F.; Lelli, R. Time-Resolved Fluoroimmunoassay for Quantitative Determination of Ampicillin in Cow Milk Samples with Different Fat Contents. Talanta 2008, 77, 126–130. DOI: 10.1016/j.talanta.2008.05.057.
  • Li, X.; Huo, T.; Chu, X.; Xu, C. Time-Resolved Fluoroimmunoassay for 19-Nortestosterone Residues in Aquaculture Tissues. Anal. Sci. 2007, 23, 321–325. DOI: 10.2116/analsci.23.321.
  • Pikkemaat, M. G.; Rapallini, M. L.; Karp, M. T.; Elferink, J. W. Application of a Luminescent Bacterial Biosensor for the Detection of Tetracyclines in Routine Analysis of Poultry Muscle Samples. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1112–1117. DOI: 10.1080/19440041003794866.
  • Thompson, C. S.; Traynor, I. M.; Fodey, T. L.; Faulkner, D. V.; Crooks, S. R. H. Screening Method for the Detection of Residues of Amphenicol Antibiotics in Bovine, Ovine and Porcine Kidney by Optical Biosensor. Talanta 2017, 172, 120–125. DOI: 10.1016/j.talanta.2017.05.047.
  • Luan, Q.; Gan, N.; Cao, Y.; Li, T. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification. J. Agric. Food Chem. 2017, 65, 5731–5740. DOI: 10.1021/acs.jafc.7b02139.
  • Gamella, M.; Campuzano, S.; Conzuelo, F.; Esteban-Torres, M.; de las Rivas, B.; Reviejo, A. J.; Munoz, R.; Pingarron, J. M. An Amperometric Affinity Penicillin-Binding Protein Magnetosensor for the Detection of Beta-Lactam Antibiotics in Milk. Analyst 2013, 138, 2013–2022. DOI: 10.1039/c3an36727d.
  • Mishra, G. K.; Sharma, A.; Bhand, S. Ultrasensitive Detection of Streptomycin Using Flow Injection Analysis-Electrochemical Quartz Crystal Nanobalance (FIA-EQCN) Biosensor. Biosens. Bioelectron. 2015, 67, 532–539. DOI: 10.1016/j.bios.2014.09.033.
  • Baxter, G. A.; Ferguson, J. P.; O’Connor, M. C.; Elliott, C. T. Detection of Streptomycin Residues in Whole Milk Using an Optical Immunobiosensor. J. Agric. Food Chem. 2001, 49, 3204–3207. DOI: 10.1021/jf001484l.
  • Huang, X.; Aguilar, Z. P.; Li, H.; Lai, W.; Wei, H.; Xu, H.; Xiong, Y. Fluorescent Ru(Phen)3(2+)-Doped Silica Nanoparticles-Based ICTS Sensor for Quantitative Detection of Enrofloxacin Residues in Chicken Meat. Anal. Chem. 2013, 85, 5120–5128. DOI: 10.1021/ac400502v.
  • Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D. G.; Reviejo, A. J.; Marco, M. P.; Pingarron, J. M. Integrated Disposable Electrochemical Immunosensors for the Simultaneous Determination of Sulfonamide and Tetracycline Antibiotics Residues in Milk. Biosens. Bioelectron. 2013, 50, 100–105. DOI: 10.1016/j.bios.2013.06.019.
  • Conzuelo, F.; Gamella, M.; Campuzano, S.; Reviejo, A. J.; Pingarron, J. M. Disposable Amperometric Magneto-Immunosensor for Direct Detection of Tetracyclines Antibiotics Residues in Milk. Anal. Chim. Acta. 2012, 737, 29–36. DOI: 10.1016/j.aca.2012.05.051.
  • Karaseva, N. A.; Ermolaeva, T. N. Piezoelectric Immunosensors for the Detection of Individual Antibiotics and the Total Content of Penicillin Antibiotics in Foodstuffs. Talanta 2014, 120, 312–317. DOI: 10.1016/j.talanta.2013.12.018.
  • O’Mahony, J.; Moloney, M.; McConnell, R. I.; Benchikh el, O.; Lowry, P.; Furey, A.; Danaher, M. Simultaneous Detection of Four Nitrofuran Metabolites in Honey Using a Multiplexing Biochip Screening Assay. Biosens. Bioelectron. 2011, 26, 4076–4081. DOI: 10.1016/j.bios.2011.03.036.
  • Barrasso, R.; Bonerba, E.; Savarino, A. E.; Ceci, E.; Bozzo, G.; Tantillo, G. Simultaneous Quantitative Detection of Six Families of Antibiotics in Honey Using a Biochip Multi-Array Technology. Vet. Sci. 2018, 6, 1. DOI: 10.3390/vetsci6010001.
  • Gaudin, V.; Hedou, C.; Soumet, C.; Verdon, E. Evaluation and Validation of Biochip Multi-Array Technology for the Screening of Six Families of Antibiotics in Honey according to the European Guideline for the Validation of Screening Methods for Residues of Veterinary Medicines. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 1699–1711. DOI: 10.1080/19440049.2014.952784.
  • Gaudin, V.; Hedou, C.; Soumet, C.; Verdon, E. Evaluation and Validation of a Multi-Residue Method Based on Biochip Technology for the Simultaneous Screening of Six Families of Antibiotics in Muscle and Aquaculture Products. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2016, 33, 403–419. DOI: 10.1080/19440049.2015.1125529.
  • Wang, L.; Wu, J.; Wang, Q.; He, C.; Zhou, L.; Wang, J.; Pu, Q. Rapid and Sensitive Determination of Sulfonamide Residues in Milk and Chicken Muscle by Microfluidic Chip Electrophoresis. J. Agric. Food Chem. 2012, 60, 1613–1618. DOI: 10.1021/jf2036577.
  • Ding, S.; Chen, J.; Jiang, H.; He, J.; Shi, W.; Zhao, W.; Shen, J. Application of Quantum Dot-Antibody Conjugates for Detection of Sulfamethazine Residue in Chicken Muscle Tissue. J. Agric. Food Chem. 2006, 54, 6139–6142. DOI: 10.1021/jf0606961.
  • Le, T.; Zhang, Z.; Wu, J.; Shi, H.; Cao, X. A Fluorescent Immunochromatographic Strip Test Using a Quantum Dot-Antibody Probe for Rapid and Quantitative Detection of 1-Aminohydantoin in Edible Animal Tissues. Anal. Bioanal. Chem. 2018, 410, 565–572. DOI: 10.1007/s00216-017-0756-1.
  • Shen, J.; Xu, F.; Jiang, H.; Wang, Z.; Tong, J.; Guo, P.; Ding, S. Characterization and Application of Quantum Dot Nanocrystal-Monoclonal Antibody Conjugates for the Determination of Sulfamethazine in Milk by Fluoroimmunoassay. Anal. Bioanal. Chem. 2007, 389, 2243–2250. DOI: 10.1007/s00216-007-1609-0.
  • Garcia-Fernandez, J.; Trapiella-Alfonso, L.; Costa-Fernandez, J. M.; Pereiro, R.; Sanz-Medel, A. A Quantum Dot-Based Immunoassay for Screening of Tetracyclines in Bovine Muscle. J. Agric. Food Chem. 2014, 62, 1733–1740. DOI: 10.1021/jf500118x.
  • Trapiella-Alfonso, L.; Costa-Fernandez, J. M.; Pereiro, R.; Sanz-Medel, A. Development of a Quantum Dot-Based Fluorescent Immunoassay for Progesterone Determination in Bovine Milk. Biosens. Bioelectron. 2011, 26, 4753–4759. DOI: 10.1016/j.bios.2011.05.044.
  • Song, E.; Yu, M.; Wang, Y.; Hu, W.; Cheng, D.; Swihart, M. T.; Song, Y. Multi-Color Quantum Dot-Based Fluorescence Immunoassay Array for Simultaneous Visual Detection of Multiple Antibiotic Residues in Milk. Biosens. Bioelectron. 2015, 72, 320–325. DOI: 10.1016/j.bios.2015.05.018.
  • Berlina, A. N.; Taranova, N. A.; Zherdev, A. V.; Vengerov, Y. Y.; Dzantiev, B. B. Quantum Dot-Based Lateral Flow Immunoassay for Detection of Chloramphenicol in Milk. Anal. Bioanal. Chem. 2013, 405, 4997–5000. DOI: 10.1007/s00216-013-6876-3.
  • Hou, J.; Li, H.; Wang, L.; Zhang, P.; Zhou, T.; Ding, H.; Ding, L. Rapid Microwave-Assisted Synthesis of Molecularly Imprinted Polymers on Carbon Quantum Dots for Fluorescent Sensing of Tetracycline in Milk. Talanta 2016, 146, 34–40. DOI: 10.1016/j.talanta.2015.08.024.
  • de Keizer, W.; Bienenmann-Ploum, M. E.; Bergwerff, A. A.; Haasnoot, W. Flow Cytometric Immunoassay for Sulfonamides in Raw Milk. Anal. Chim. Acta. 2008, 620, 142–149. DOI: 10.1016/j.aca.2008.05.013.
  • Bienenmann-Ploum, M. E.; Huet, A. C.; Campbell, K.; Fodey, T. L.; Vincent, U.; Haasnoot, W.; Delahaut, P.; Elliott, C. T.; Nielen, M. W. Development of a Five-Plex Flow Cytometric Immunoassay for the Simultaneous Detection of Six Coccidiostats in Feed and Eggs. Anal. Bioanal. Chem. 2012, 404, 1361–1373. DOI: 10.1007/s00216-012-6214-1.
  • Hu, L.; Zuo, P.; Ye, B. C. Multicomponent Mesofluidic System for the Detection of Veterinary Drug Residues Based on Competitive Immunoassay. Anal. Biochem. 2010, 405, 89–95. DOI: 10.1016/j.ab.2010.05.034.
  • Zhang, D.; Zuo, P.; Ye, B. C. Bead-Based Mesofluidic System for Residue Analysis of Chloramphenicol. J. Agric. Food Chem. 2008, 56, 9862–9867. DOI: 10.1021/jf802093a.
  • Jiang, W.; Beloglazova, N. V.; Wang, Z.; Jiang, H.; Wen, K.; de Saeger, S.; Luo, P.; Wu, Y.; Shen, J. Development of a Multiplex Flow-through Immunoaffinity Chromatography Test for the on-Site Screening of 14 Sulfonamide and 13 Quinolone Residues in Milk. Biosens. Bioelectron. 2015, 66, 124–128. DOI: 10.1016/j.bios.2014.11.004.
  • Su, P.; Liu, N.; Zhu, M.; Ning, B.; Liu, M.; Yang, Z.; Pan, X.; Gao, Z. Simultaneous Detection of Five Antibiotics in Milk by High-Throughput Suspension Array Technology. Talanta 2011, 85, 1160–1165. DOI: 10.1016/j.talanta.2011.05.040.
  • Wang, X.; Gong, J.; Yuan, B.; Chen, Z.; Jiang, J. Sensitive and Multiplexed Detection of Antibiotics Using a Suspension Array Platform Based on Silica-Agarose Hybrid Microbeads. J. Hazard. Mater. 2019, 373, 115–121. DOI: 10.1016/j.jhazmat.2019.03.081.
  • Douglas, D.; Banaszewski, K.; Juskelis, R.; Al-Taher, F.; Chen, Y.; Cappozzo, J.; McRobbie, L.; Salter, R. S. Validation of a Rapid Lateral Flow Test for the Simultaneous Determination of Beta-Lactam Drugs and Flunixin in Raw Milk. J. Food Prot. 2012, 75, 1270–1277. DOI: 10.4315/0362-028X.JFP-11-570.
  • Chen, Y.; Chen, Q.; Han, M.; Liu, J.; Zhao, P.; He, L.; Zhang, Y.; Niu, Y.; Yang, W.; Zhang, L. Near-Infrared Fluorescence-Based Multiplex Lateral Flow Immunoassay for the Simultaneous Detection of Four Antibiotic Residue Families in Milk. Biosens. Bioelectron. 2016, 79, 430–434. DOI: 10.1016/j.bios.2015.12.062.
  • Hoff, R. B.; Barreto, F.; Kist, T. B. Use of Capillary Electrophoresis with Laser-Induced Fluorescence Detection to Screen and Liquid Chromatography-Tandem Mass Spectrometry to Confirm Sulfonamide Residues: Validation According to European Union 2002/657/EC. J. Chromatogr. A. 2009, 1216, 8254–8261. DOI: 10.1016/j.chroma.2009.07.074.
  • Deng, B.; Xu, Q.; Lu, H.; Ye, L.; Wang, Y. Pharmacokinetics and Residues of Tetracycline in Crucian Carp Muscle Using Capillary Electrophoresis on-Line Coupled with Electrochemiluminescence Detection. Food Chem. 2012, 134, 2350–2354. DOI: 10.1016/j.foodchem.2012.03.117.
  • Long, C.; Deng, B.; Sun, S.; Meng, S. Simultaneous Determination of Chlortetracycline, Ampicillin and Sarafloxacin in Milk Using Capillary Electrophoresis with Electrochemiluminescence Detection. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 24–31. DOI: 10.1080/19440049.2016.1254820.
  • Polo-Luque, M. L.; Simonet, B. M.; Valcarcel, M. Solid Phase Extraction-Capillary Electrophoresis Determination of Sulphonamide Residues in Milk Samples by Use of C18-Carbon Nanotubes as Hybrid Sorbent Materials. Analyst 2013, 138, 3786–3791. DOI: 10.1039/c3an00319a.
  • Yu, C. Z.; He, Y. Z.; Fu, G. N.; Xie, H. Y.; Gan, W. E. Determination of Kanamycin A, Amikacin and Tobramycin Residues in Milk by Capillary Zone Electrophoresis with Post-Column Derivatization and Laser-Induced Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 333–338. DOI: 10.1016/j.jchromb.2008.12.011.
  • Miranda, J. M.; Rodriguez, J. A.; Galan-Vidal, C. A. Simultaneous Determination of Tetracyclines in Poultry Muscle by Capillary Zone Electrophoresis. J. Chromatogr. A. 2009, 1216, 3366–3371. DOI: 10.1016/j.chroma.2009.01.105.
  • Dai, T.; Duan, J.; Li, X.; Xu, X.; Shi, H.; Kang, W. Determination of Sulfonamide Residues in Food by Capillary Zone Electrophoresis with on-Line Chemiluminescence Detection Based on an Ag(III) Complex. Int. J. Mol. Sci. 2017, 18, 1286.
  • Zhou, C.; Deng, J.; Shi, G.; Zhou, T. β β-cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis. Electrophoresis 2017, 38, 1060–1067. DOI: 10.1002/elps.201600229.
  • Cerkvenik-Flajs, V. Performance Characteristics of an Analytical Procedure for Determining Chloramphenicol Residues in Muscle Tissue by Gas Chromatography-Electron Capture Detection. Biomed. Chromatogr. 2006, 20, 985–992. DOI: 10.1002/bmc.599.
  • Gamba, V.; Terzano, C.; Fioroni, L.; Moretti, S.; Dusi, G.; Galarini, R. Development and Validation of a Confirmatory Method for the Determination of Sulphonamides in Milk by Liquid Chromatography with Diode Array Detection. Anal. Chim. Acta. 2009, 637, 18–23. DOI: 10.1016/j.aca.2008.09.022.
  • Karageorgou, E.; Armeni, M.; Moschou, I.; Samanidou, V. Ultrasound-Assisted Dispersive Extraction for the High Pressure Liquid Chromatographic Determination of Tetracyclines Residues in Milk with Diode Array Detection. Food Chem. 2014, 150, 328–334. DOI: 10.1016/j.foodchem.2013.11.008.
  • Tsai, W. H.; Chuang, H. Y.; Chen, H. H.; Huang, J. J.; Chen, H. C.; Cheng, S. H.; Huang, T. C. Application of Dispersive Liquid-Liquid Microextraction and Dispersive Micro-Solid-Phase Extraction for the Determination of Quinolones in Swine Muscle by High-Performance Liquid Chromatography with Diode-Array Detection. Anal. Chim. Acta. 2009, 656, 56–62. DOI: 10.1016/j.aca.2009.10.008.
  • Nasim, A.; Aslam, B.; Javed, I.; Ali, A.; Muhammad, F.; Raza, A.; Sindhu, Z. U. Determination of Florfenicol Residues in Broiler Meat and Liver Samples Using RP-HPLC with UV-Visible Detection. J. Sci. Food Agric. 2016, 96, 1284–1288. DOI: 10.1002/jsfa.7220.
  • Santos, B.; Lista, A.; Simonet, B. M.; Rios, A.; Valcarcel, M. Screening and Analytical Confirmation of Sulfonamide Residues in Milk by Capillary Electrophoresis-Mass Spectrometry. Electrophoresis 2005, 26, 1567–1575. DOI: 10.1002/elps.200410267.
  • Lara, F. J.; Garcia-Campana, A. M.; Ales-Barrero, F.; Bosque-Sendra, J. M.; Garcia-Ayuso, L. E. Multiresidue Method for the Determination of Quinolone Antibiotics in Bovine Raw Milk by Capillary Electrophoresis-Tandem Mass Spectrometry. Anal. Chem. 2006, 78, 7665–7673. DOI: 10.1021/ac061006v.
  • Bailon-Perez, M. I.; Garcia-Campana, A. M.; del Olmo Iruela, M.; Cruces-Blanco, C.; Gamiz Gracia, L. Multiresidue Determination of Penicillins in environmental waters and Chicken Muscle Samples by Means of Capillary Electrophoresis-Tandem Mass Spectrometry. Electrophoresis 2009, 30, 1708–1717. DOI: 10.1002/elps.200800732.
  • Juan-Garcia, A.; Font, G.; Pico, Y. Determination of Quinolone Residues in Chicken and Fish by Capillary Electrophoresis-Mass Spectrometry. Electrophoresis 2006, 27, 2240–2249. DOI: 10.1002/elps.200500868.
  • Moreno-Gonzalez, D.; Hamed, A. M.; Gilbert-Lopez, B.; Gamiz-Gracia, L.; Garcia-Campana, A. M. Evaluation of a Multiresidue Capillary Electrophoresis-Quadrupole-Time-of-Flight Mass Spectrometry Method for the Determination of Antibiotics in Milk Samples. J. Chromatogr. A. 2017, 1510, 100–107. DOI: 10.1016/j.chroma.2017.06.055.
  • Azzouz, A.; Souhail, B.; Ballesteros, E. Determination of Residual Pharmaceuticals in Edible Animal Tissues by Continuous Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry. Talanta 2011, 84, 820–828. DOI: 10.1016/j.talanta.2011.02.016.
  • Jiang, J. Q.; Zhang, L.; Li, G. L.; Zhang, H. T.; Yang, X. F.; Liu, J. W.; Li, R. F.; Wang, Z. L.; Wang, J. H. Analysis of 19-Nortestosterone Residue in Animal Tissues by Ion-Trap Gas Chromatography-Tandem Mass Spectrometry. J. Zhejiang Univ. Sci. B. 2011, 12, 460–467. DOI: 10.1631/jzus.B1000301.
  • Impens, S.; De Wasch, K.; Comelis, M.; De Brabander, H. F. Analysis on Residues of Estrogens, Gestagens and Androgens in Kidney Fat and Meat with Gas Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2002, 970, 235–247. DOI: 10.1016/S0021-9673(02)00313-8.
  • He, L.; Su, Y.; Fang, B.; Shen, X.; Zeng, Z.; Liu, Y. Determination of Sudan Dye Residues in Eggs by Liquid Chromatography and Gas Chromatography-Mass Spectrometry. Anal. Chim. Acta. 2007, 594, 139–146. DOI: 10.1016/j.aca.2007.05.021.
  • Zhu, X.; Wang, S.; Liu, Q.; Xu, Q.; Xu, S.; Chen, H. Determination of Residues of Cyromazine and Its Metabolite, Melamine, in Animal-Derived Food by Gas Chromatography-Mass Spectrometry with Derivatization. J. Agric. Food Chem. 2009, 57, 11075–11080. DOI: 10.1021/jf902771q.
  • Sai, F.; Hong, M.; Yunfeng, Z.; Huijing, C.; Yongning, W. Simultaneous Detection of Residues of 25 Beta(2)-Agonists and 23 Beta-Blockers in Animal Foods by High-Performance Liquid Chromatography Coupled with Linear Ion Trap Mass Spectrometry. J. Agric. Food Chem. 2012, 60, 1898–1905. DOI: 10.1021/jf2039058.
  • Barreto, F.; Ribeiro, C.; Hoff, R. B.; Costa, T. D. A Simple and High-Throughput Method for Determination and Confirmation of 14 Coccidiostats in Poultry Muscle and Eggs using Liquid Chromatography – Quadrupole Linear Ion Trap - Tandem Mass Spectrometry (HPLC-QqLIT-MS/MS): Validation According to European Union 2002/657/EC. Talanta 2017, 168, 43–51. DOI: 10.1016/j.talanta.2017.02.007.
  • Zhao, X.; Wang, B.; Xie, K.; Liu, J.; Zhang, Y.; Wang, Y.; Guo, Y.; Zhang, G.; Dai, G.; Wang, J. Development and Comparison of HPLC-MS/MS and UPLC-MS/MS Methods for Determining Eight Coccidiostats in Beef. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1087–1088, 98–107. DOI: 10.1016/j.jchromb.2018.04.044.
  • Sun, H.; Yu, Q. W.; He, H. B.; Lu, Q.; Shi, Z. G.; Feng, Y. Q. Nickel Oxide Nanoparticle-Deposited Silica Composite Solid-Phase Extraction for Benzimidazole Residue Analysis in Milk and Eggs by Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2016, 64, 356–363. DOI: 10.1021/acs.jafc.5b04672.
  • García-Gómez, D.; García-Hernández, M.; Rodríguez-Gonzalo, E.; Carabias-Martínez, R. A Fast and Reliable Method for the Quantitative Determination of Benzimidazoles and Metabolites in Milk by LC-MS/MS with on-Line Sample Treatment. Anal. Bioanal. Chem. 2012, 404, 2909–2914. DOI: 10.1007/s00216-012-6415-7.
  • Silva, G. R. D.; Lima, J. A.; Souza, L. F.; Santos, F. A.; Lana, M. A. G.; Assis, D. C. S.; Cançado, S. V. Multiresidue Method for Identification and Quantification of Avermectins, Benzimidazoles and Nitroimidazoles Residues in Bovine Muscle Tissue by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS) Using a QuEChERS Approach. Talanta 2017, 171, 307–320. DOI: 10.1016/j.talanta.2017.05.012.
  • Busatto, Z.; da Silva, A. F.; de Freitas, O.; Paschoal, J. A. LC-MS/MS Methods for Albendazole Analysis in Feed and Its Metabolite Residues in Fish Fillet and a Leaching Study in Feed after an Alternative Procedure for Drug Incorporation. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2017, 34, 509–519. DOI: 10.1080/19440049.2016.1272008.
  • da Costa, R. P.; Spisso, B. F.; Pereira, M. U.; Monteiro, M. A.; Ferreira, R. G.; da Nóbrega, A. W. Innovative Mixture of Salts in the Quick, Easy, Cheap, Effective, Rugged, and Safe Method for the Extraction of Residual Macrolides in Milk Followed by Analysis with Liquid Chromatography and Tandem Mass Spectrometry. J. Sep. Sci. 2015, 38, 3743–3749. DOI: 10.1002/jssc.201500373.
  • Zhou, W.; Ling, Y.; Liu, T.; Zhang, Y.; Li, J.; Li, H.; Wu, W.; Jiang, S.; Feng, F.; Yuan, F.; et al. Simultaneous Determination of 16 Macrolide Antibiotics and 4 Metabolites in Milk by Using Quick, Easy, Cheap, Effective, Rugged, and Safe Extraction (QuEChERS) and High Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1061–1062, 411–420.
  • Wang, J. Determination of Five Macrolide Antibiotic Residues in Honey by LC-ESI-MS and LC-ESI-MS/MS. J. Agric. Food Chem. 2004, 52, 171–181. DOI: 10.1021/jf034823u.
  • Zhao, H.; Ding, M.; Gao, Y.; Deng, W. Determination of Sulfonamides in Pork, Egg, and Chicken Using Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Sorbent Followed by Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 2014, 97, 1481–1488. DOI: 10.5740/jaoacint.13-133.
  • Yu, H.; Tao, Y.; Chen, D.; Wang, Y.; Huang, L.; Peng, D.; Dai, M.; Liu, Z.; Wang, X.; Yuan, Z. Development of a High Performance Liquid Chromatography Method and a Liquid Chromatography-Tandem Mass Spectrometry Method with the Pressurized Liquid Extraction for the Quantification and Confirmation of Sulfonamides in the Foods of Animal Origin. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2011, 879, 2653–2662. DOI: 10.1016/j.jchromb.2011.07.032.
  • Kung, T. A.; Tsai, C. W.; Ku, B. C.; Wang, W. H. A Generic and Rapid Strategy for Determining Trace Multiresidues of Sulfonamides in Aquatic Products by Using an Improved QuEChERS Method and Liquid Chromatography-Electrospray Quadrupole Tandem Mass Spectrometry. Food Chem. 2015, 175, 189–196. DOI: 10.1016/j.foodchem.2014.11.133.
  • Hiba, A.; Carine, A.; Haifa, A. R.; Ryszard, L.; Farouk, J. Monitoring of Twenty-Two Sulfonamides in Edible Tissues: Investigation of New Metabolites and Their Potential Toxicity. Food Chem. 2016, 192, 212–227. DOI: 10.1016/j.foodchem.2015.06.093.
  • Desmarchelier, A.; Anizan, S.; Minh Tien, M.; Savoy, M. C.; Bion, C. Determination of Five Tetracyclines and Their Epimers by LC-MS/MS Based on a Liquid-Liquid Extraction with Low Temperature Partitioning. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2018, 35, 686–694. DOI: 10.1080/19440049.2018.1427894.
  • Tarapoulouzi, M.; Papachrysostomou, C.; Constantinou, S.; Kanari, P.; Hadjigeorgiou, M. Determinative and Confirmatory Method for Residues of Tetracyclines in Honey by LC-MS/MS. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2013, 30, 1728–1732. DOI: 10.1080/19440049.2013.814075.
  • Chen, K.; Wang, J.; Li, S.; Wang, Y.; Zhang, Y.; Shen, Q. High-Throughput 96-Well Solid-Phase Extraction for Preparation of Tetracycline Followed by Liquid Chromatography and Mass Spectrometry Analysis. Electrophoresis 2019, 40, 555–562. DOI: 10.1002/elps.201800473.
  • Cammilleri, G.; Pulvirenti, A.; Vella, A.; Macaluso, A.; Lo Dico, G. M.; Giaccone, V.; Giordano, V.; Vinciguerra, M.; Cicero, N.; Cicero, A.; et al. Tetracycline Residues in Bovine Muscle and Liver Samples from Sicily (Southern Italy) by LC-MS/MS Method: A Six-Year Study. Molecules 2019, 24, 695. DOI: 10.3390/molecules24040695.
  • Van Royen, G.; Dubruel, P.; Van Weyenberg, S.; Daeseleire, E. Evaluation and Validation of the Use of a Molecularly Imprinted Polymer Coupled to LC-MS for Benzylpenicillin Determination in Meat Samples. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016, 1025, 48–56. DOI: 10.1016/j.jchromb.2016.05.003.
  • Macarov, C. A.; Tong, L.; Martínez-Huélamo, M.; Hermo, M. P.; Chirila, E.; Wang, Y. X.; Barrón, D.; Barbosa, J. Multi Residue Determination of the Penicillins Regulated by the European Union, in Bovine, Porcine and Chicken Muscle, by LC-MS/MS. Food Chem. 2012, 135, 2612–2621. DOI: 10.1016/j.foodchem.2012.06.126.
  • Hamamoto, K.; Akama, R.; Mizuno, Y. Measurement of Ampicillin Residue Levels in Chicken Eggs during and after Medicated Feed Administration by LC-MS/MS. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 1249–1255. DOI: 10.1080/19440049.2015.1062922.
  • Díaz-Bao, M.; Barreiro, R.; Miranda, J. M.; Cepeda, A.; Regal, P. Fast HPLC-MS/MS Method for Determining Penicillin Antibiotics in Infant Formulas Using Molecularly Imprinted Solid-Phase Extraction. J. Anal. Meth. Chem. 2015, 2015, 959675. DOI: 10.1155/2015/959675.
  • van Holthoon, F.; Mulder, P. P.; van Bennekom, E. O.; Heskamp, H.; Zuidema, T.; van Rhijn, H. J. Quantitative Analysis of Penicillins in Porcine Tissues, Milk and Animal Feed Using Derivatisation with Piperidine and Stable Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2010, 396, 3027–3040. DOI: 10.1007/s00216-010-3523-0.
  • Mei, M.; Huang, X. Determination of Fluoroquinolones in Environmental Water and Milk Samples Treated with Stir Cake Sorptive Extraction Based on a Boron-Rich Monolith. J. Sep. Sci. 2016, 39, 1908–1918. DOI: 10.1002/jssc.201600232.
  • Clemente, M.; Hermo, M. P.; Barrón, D.; Barbosa, J. Confirmatory and Quantitative Analysis Using Experimental Design for the Extraction and Liquid Chromatography-UV, Liquid Chromatography-Mass Spectrometry and Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Determination of Quinolones in turkey Muscle. J. Chromatogr. A. 2006, 1135, 170–178. DOI: 10.1016/j.chroma.2006.09.041.
  • Wagil, M.; Kumirska, J.; Stolte, S.; Puckowski, A.; Maszkowska, J.; Stepnowski, P.; Białk-Bielińska, A. Development of Sensitive and Reliable LC-MS/MS Methods for the Determination of Three Fluoroquinolones in Water and Fish Tissue Samples and Preliminary Environmental Risk Assessment of Their Presence in Two Rivers in Northern Poland. Sci. Total Environ. 2014, 493, 1006–1013. DOI: 10.1016/j.scitotenv.2014.06.082.
  • Young, M. S.; van Tran, K.; Goh, E.; Shia, J. C. A Rapid SPE-Based Analytical Method for UPLC/MS/MS Determination of Aminoglycoside Antibiotic Residues in Bovine Milk, Muscle, and Kidney. J. AOAC Int. 2014, 97, 1737–1741. DOI: 10.5740/jaoacint.13-153.
  • Wang, X.; Yang, S.; Li, Y.; Zhang, J.; Jin, Y.; Zhao, W.; Zhang, Y.; Huang, J.; Wang, P.; Wu, C.; et al. Optimization and Application of Parallel Solid-Phase Extraction Coupled with Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry for the Determination of 11 Aminoglycoside Residues in Honey and Royal Jelly. J. Chromatogr. A. 2018, 1542, 28–36. DOI: 10.1016/j.chroma.2018.02.029.
  • Savoy, M. C.; Woo, P. M.; Ulrich, P.; Tarres, A.; Mottier, P.; Desmarchelier, A. Determination of 14 Aminoglycosides by LC-MS/MS Using Molecularly Imprinted Polymer Solid Phase Extraction for Clean-up. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018, 35, 674–685. DOI: 10.1080/19440049.2018.1433332.
  • Moreno-González, D.; Hamed, A. M.; García-Campaña, A. M.; Gámiz-Gracia, L. Evaluation of Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry and Extraction with Molecularly Imprinted Polymers for Determination of Aminoglycosides in Milk and Milk-Based Functional Foods. Talanta 2017, 171, 74–80. DOI: 10.1016/j.talanta.2017.04.062.
  • Ma, L.; Fan, X.; Jia, L.; Wang, J.; Wang, S.; Zhao, L. Multiresidue Analysis of Glucocorticoids in Milk by LC-MS/MS with Low-Temperature Purification and Dispersive Solid-Phase Extraction. J. Sep. Sci. 2017, 40, 2759–2768. DOI: 10.1002/jssc.201700064.
  • Cui, X.; Shao, B.; Zhao, R.; Yang, Y.; Hu, J.; Tu, X. Simultaneous Determination of Seventeen Glucocorticoids Residues in Milk and Eggs by Ultra-Performance Liquid Chromatography/Electrospray Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2355–2364. DOI: 10.1002/rcm.2544.
  • Li, I. C.; Yang, W. Y.; Chou, C. H.; Chen, Y. C.; Kuo, S. L.; Wang, S. Y. Analysis of Steroid Hormones in Shell Eggs from Layer Breeds Common to Taiwan by Liquid Chromatography-Tandem Mass Spectrometry. Food Sci. Nutr. 2019, 7, 2319–2326. DOI: 10.1002/fsn3.1074.
  • Han, X.; Liu, D. Detection and Analysis of 17 Steroid Hormones by Ultra-High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry (UHPLC-MS) in Different Sex and Maturity Stages of Antarctic Krill (Euphausia superba dana). PLoS One. 2019, 14, e0213398. DOI: 10.1371/journal.pone.0213398.
  • Dasenaki, M. E.; Thomaidis, N. S. Multi-Residue Determination of 115 Veterinary Drugs and Pharmaceutical Residues in Milk Powder, Butter, Fish Tissue and Eggs Using Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta. 2015, 880, 103–121. DOI: 10.1016/j.aca.2015.04.013.
  • Kaufmann, A.; Butcher, P.; Maden, K.; Widmer, M. Quantitative Multiresidue Method for about 100 Veterinary Drugs in Different Meat Matrices by Sub 2-Microm Particulate High-Performance Liquid Chromatography Coupled to Time of Flight Mass Spectrometry. J. Chromatogr. A. 2008, 1194, 66–79. DOI: 10.1016/j.chroma.2008.03.089.
  • Peters, R. J.; Bolck, Y. J.; Rutgers, P.; Stolker, A. A.; Nielen, M. W. Multi-Residue Screening of Veterinary Drugs in Egg, Fish and Meat Using High-Resolution Liquid Chromatography Accurate Mass Time-of-Flight Mass Spectrometry. J. Chromatogr. A. 2009, 1216, 8206–8216. DOI: 10.1016/j.chroma.2009.04.027.
  • Wang, J.; Leung, D.; Chow, W.; Chang, J.; Wong, J. W. Target Screening of 105 Veterinary Drug Residues in Milk Using UHPLC/ESI Q-Orbitrap Multiplexing Data Independent Acquisition. Anal. Bioanal. Chem. 2018, 410, 5373–5389. DOI: 10.1007/s00216-017-0847-z.
  • Anumol, T.; Lehotay, S. J.; Stevens, J.; Zweigenbaum, J. Comparison of Veterinary Drug Residue Results in Animal Tissues by Ultrahigh-Performance Liquid Chromatography Coupled to Triple Quadrupole or Quadrupole-Time-of-Flight Tandem Mass Spectrometry after Different Sample Preparation Methods, Including use of a Commercial Lipid Removal Product. Anal. Bioanal. Chem. 2017, 409, 2639–2653. DOI: 10.1007/s00216-017-0208-y.
  • Garrido Frenich, A.; Aguilera-Luiz, M. d-M.; Martínez Vidal, J. L.; Romero-González, R. Comparison of Several Extraction Techniques for Multiclass Analysis of Veterinary Drugs in Eggs Using Ultra-High Pressure Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta. 2010, 661, 150–160. DOI: 10.1016/j.aca.2009.12.016.
  • Guo, P.; Wan, J.; Zhan, C.; Zhu, C.; Jiang, W.; Ke, Y.; Ding, S.; Wang, D. A Simplified Sample Pretreatment for the Rapid Determination of 22 Beta-Agonist Residues in Swine Muscle and Liver Tissues by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1096, 122–134. DOI: 10.1016/j.jchromb.2018.07.038.
  • Turnipseed, S. B.; Storey, J. M.; Wu, I. L.; Gieseker, C. M.; Hasbrouck, N. R.; Crosby, T. C.; Andersen, W. C.; Lanier, S.; Casey, C. R.; Burger, R.; et al. Application and Evaluation of a High-Resolution Mass Spectrometry Screening Method for Veterinary Drug Residues in Incurred Fish and Imported Aquaculture Samples. Anal. Bioanal. Chem. 2018, 410, 5529–5544. DOI: 10.1007/s00216-018-0917-x.
  • Romero-Gonzalez, R.; Aguilera-Luiz, M. M.; Plaza-Bolanos, P.; Frenich, A. G.; Vidal, J. L. Food Contaminant Analysis at High Resolution Mass Spectrometry: Application for the Determination of Veterinary Drugs in Milk. J. Chromatogr. A. 2011, 1218, 9353–9365. DOI: 10.1016/j.chroma.2011.10.074.
  • Śniegocki, T.; Sell, B.; Giergiel, M.; Posyniak, A. QuEChERS and HPLC-MS/MS Combination for the Determination of Chloramphenicol in Twenty Two Different Matrices. Molecules 2019, 24, 384. DOI: 10.3390/molecules24030384.
  • Lin, S.; Yi, Q.; Hong, J.; Chen, M.; Yuan, D. Matrix Effect and Retention Efficiency of Hydrophilic-Lipophilic Balance Cartridges in Multi-Residual Determination of Veterinary Drugs in River Water. Se Pu 2013, 31, 980–988. DOI: 10.3724/SP.J.1123.2013.04043.
  • Ghosh, C.; Shinde, C. P.; Chakraborty, B. S. Influence of Ionization Source Design on Matrix Effects during LC-ESI-MS/MS Analysis. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2012, 893-894, 193–200. DOI: 10.1016/j.jchromb.2012.03.012.
  • Gressler, V.; Franzen, A. R. L.; de Lima, G.; Tavernari, F. C.; Dalla Costa, O. A.; Feddern, V. Development of a Readily Applied Method to Quantify Ractopamine Residue in Meat and Bone Meal by QuEChERS-LC-MS/MS. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016, 1015–1016, 192–200. DOI: 10.1016/j.jchromb.2016.01.063.
  • Wang, G.; Zhao, J.; Peng, T.; Chen, D.; Xi, C.; Wang, X.; Zhang, J. Matrix Effects in the Determination of Beta-Receptor Agonists in Animal-Derived Foodstuffs by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry with Immunoaffinity Solid-Phase Extraction. J. Sep. Sci. 2013, 36, 796–802. DOI: 10.1002/jssc.201200661.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.