366
Views
0
CrossRef citations to date
0
Altmetric
Articles

Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Han, X. L. Comprehensive Mass Spectrometry of Lipids; John Wiley & Sons: Hoboken, NJ, 2016; ch. 1, pp 15. DOI: 10.1002/9781119085263.ch1.
  • Kishimoto, K.; Urade, R.; Ogawa, T.; Moriyama, T. Nondestructive Quantification of Neutral Lipids by Thin-Layer Chromatography and Laser-Fluorescent Scanning: Suitable Methods for “Lipidome” Analysis. Biochem. Biophys. Res. Commun. 2001, 281, 657–662. DOI: 10.1006/bbrc.2001.4404.
  • Morlock, G. E.; Schwack, W. Coupling of Planar Chromatography to Mass Spectrometry. Trac. Trends Anal. Chem. 2010, 29, 1157–1171. DOI: 10.1016/j.trac.2010.07.010.
  • Morlock, G. E.; Schwack, W. Hyphenations in Planar Chromatography. J. Chromatogr. A 2010, 1217, 6600–6609. DOI: 10.1016/j.chroma.2010.04.058.
  • Kowalska, T.; Sajewicz, M.; Sherma, J., Ed. Planar Chromatography-Mass Spectrometry; CRC Press/Taylor & Francis Group: Boca Raton, FL, 2015. DOI: 10.1201/b19090.
  • Han, X. L. Comprehensive Mass Spectrometry of Lipids; John Wiley & Sons: Hoboken, NJ, 2016; ch. 3, pp 72–78. DOI: 10.1002/9781119085263.ch3.
  • Drin, G., Ed. Intracellular Lipid Transport. Methods and Protocols. Methods in Molecular Biology 1949; Humana Press: New York, 2019; Preface. DOI: 10.1007/978-1-4939-9136-5.
  • Irungbam, K.; Roderfeld, M.; Glimm, H.; Hempel, F.; Schneider, F.; Hehr, L.; Glebe, D.; Churin, Y.; Morlock, G.; Yüce, I.; Roeb, E. Cholestasis Impairs Hepatic Lipid Storage via AMPK and CREB Signaling in Hepatitis B Virus Surface Protein Transgenic Mice. Lab. Invest. 2020, 100, 1411–1424. DOI: 10.1038/s41374-020-0457-9.
  • Engel, K. M.; Popkova, Y.; Leopold, J.; Schiller, J. What Can MS, NMR, and TLC Tell Us about the Composition of Lipid Membranes?. In Analysis of Membrane Lipids, Springer Protocols Handbooks; Prasad, R.; Singh, A., Ed.; Springer Science + Business Media, LLC: New York, NY, 2020; ch. 5, pp 59–82. DOI: 10.1007/978-1-0716-0631-5_5.
  • Demchenko, D.; Pozharitskaya, O.; Shikov, A.; Makarov, V. Validated HPTLC Method for Quantification of Vitamin D3 in Fish Oil. J. Planar Chromatogr.- Mod. TLC 2011, 24, 487–490. DOI: 10.1556/JPC.24.2011.6.6.
  • Cebolla, V. L.; Jarne, C.; Domingo, P.; Dominguez, A.; Delgado-Camón, A.; Garriga, R.; Galban, J.; Membrado, L.; Galvez, E. M.; Cossío, F. P. Fluorescence Detection by Intensity Changes for High-Performance Thin-Layer Chromatography Separation of Lipids Using Automated Multiple Development. J. Chromatogr. A. 2011, 1218, 2668–2675. DOI: 10.1016/j.chroma.2010.11.033.
  • Domínguez, A.; Jarne, C.; Cebolla, V. L.; Galbán, J.; Savirón, M.; Orduna, J.; Membrado, L.; Lapieza, M. P.; Romero, E.; Sanz-Vicente, I.; et al. A Hyphenated Technique Based on High-Performance Thin Layer Chromatography for Determining Neutral Sphingolipids: A Proof of Concept. Chromatography 2015, 2, 167–187. DOI: 10.3390/chromatography2020167.
  • Jarne, C.; Savirón, M.; Lapieza, M. P.; Membrado, L.; Orduna, J.; Galbán, J.; Garriga, R.; Morlock, G. E.; Cebolla, V. L. High-Performance Thin-Layer Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry for Identifying Neutral Lipids and Sphingolipids in Complex Samples. J. AOAC Int. 2018, 101, 1993–2000. DOI: 10.5740/jaoacint.17-0329.
  • Lapieza, M. P.; Jungas, C.; Savirón, M.; Jarne, C.; Membrado, L.; Vela, J.; Orduna, J.; Garriga, R.; Galbán, J.; Cebolla, V. L. HPTLC Coupled to ESI-Tandem MS for Identifying Phospholipids Associated to Membrane Proteins in Photosynthetic Purple Bacteria. J. Liq. Chromatogr. Rel. Technol. 2019, 42, 1–8. DOI: 10.1080/10826076.2018.1561465.
  • Jork, H.; Funk, W.; Fischer, W.; Wimmer, H. Thin-Layer Chromatography. Reagent and Detection Methods; VCH: Weinheim, 1994; Vols 1a and 1b. ISBN 3-527-27834-6 and 3-527-28205-X.
  • Dyeing Reagents for Thin-Layer and Paper Chromatography. http://www.cchem.berkeley.edu/rsgrp/TLCStainGeneralReference.pdf (accessed Mar 23, 2020).
  • Cyberlipid. http://cyberlipid.gerli.com/techniques-of-analysis/analysis-of-complex-lipids/phospholipid-analysis/tlc-identification-of-pl/ (accessed Mar 23, 2020).
  • Lopalco, P.; Stahl, J.; Annese, C.; Averhoff, B.; Corcelli, A. Identification of Unique Cardiolipin and Monolysocardiolipin Species in Acinetobacter baumannii. Sci. Rep. 2017, 7, 1–12. DOI: 10.1038/s41598-017-03214-w.
  • Lobasso, S.; Tanzarella, P.; Vergara, D.; Maffia, M.; Cocco, T.; Corcelli, A. Lipid Profiling of Parkin-Mutant Human Skin Fibroblasts. J. Cell. Physiol. 2017, 232, 3540–3551. DOI: 10.1002/jcp.25815.
  • Parchem, K.; Kusznierewicz, B.; Chmiel, T.; Maciołek, P.; Bartoszek, A. Profiling and Qualitative Assessment of Enzymatically and Thermally Oxidized Egg Yolk Phospholipids Using a Two-Step High-Performance Liquid Chromatography Protocol. J. Am. Oil Chem. Soc. 2019, 96, 693–706.
  • Lobasso, S.; Lopalco, P.; Angelini, R.; Vitale, R.; Huber, H.; Muller, V.; Corcelli, A. Coupled TLC and MALDI-TOF/MS Analyses of the Lipid Extract of the Hyperthermophilic Archaeon Pyrococcus furiosus. Archaea 2012, 2012, 957852. DOI: 10.1155/2012/957852.
  • Lobasso, S.; Lopalco, P.; Angelini, R.; Baronio, M.; Fanizzi, F. P.; Babudri, F.; Corcelli, A. Lipidomic Analysis of Porcine Olfactory Epithelial Membranes and Cilia. Lipids 2010, 45, 593–602. DOI: 10.1007/s11745-010-3432-1.
  • Meisen, I.; Mormann, M.; Müthing, J. Thin-Layer Chromatography, Overlay Technique and Mass Spectrometry: A Versatile Triad Advancing Glycosphingolipidomics. Biochim. Biophys. Acta 2011, 1811, 875–896. DOI: 10.1016/j.bbalip.2011.04.006.
  • Dyńska-Kukulska, K.; Ciesielski, W.; Zakrzewski, R. The Use of a New, Modified Dittmer-Lester Spray Reagent for Phospholipid Determination by the TLC Image Analysis Technique. Biomed. Chromatogr. 2013, 27, 458–465. DOI: 10.1002/bmc.2813.
  • Bui, Q.; Sherma, J.; Hines, J. K. Using High Performance Thin Layer Chromatography-Densitometry to Study the Influence of the Prion [RNQ+] and Its Determinant Prion Protein Rnq1 on Yeast Lipid Profiles. Separations 2018, 5, 6. DOI: 10.3390/separations5010006.
  • Bui, Q.; Sherma, J.; Fried, B.; Hines, J. K. Determination of Growth-Phase Dependent Influences Exerted by Prions on Yeast Lipid Content Using HPTLC-Densitometry. Acta Chromatogr. 2016, 28, 373–385. DOI: 10.1556/1326.2016.28.3.7.
  • Counihan, J.; Hueglin, K.; Wagner, C.; Gadomski, S.; Zani, P.; Fried, B.; Sherma, J. The Effect of Diapause on Neutral Lipids in the Pitcher-Plant Mosquito Wyeomyia smithii as Determined by HPTLC-Densitometry. J. Planar Chromatogr.- Mod. TLC 2011, 24, 206–210. Jun DOI: 10.1556/JPC.24.2011.3.5.
  • Hunsberger, A.; Fried, B.; Sherma, J. Effects of Schistosoma mansoni and High Temperature on the Lipid Composition of Biomphalaria glabrata as Determined by High-Performance Thin-Layer Chromatography and Densitometry. J. Planar Chromatogr.- Mod. TLC 2015, 28, 157–161. DOI: 10.1556/JPC.28.2015.2.12.
  • O’sullivan, C.; Popovic, N.; Fried, B.; Sherma, J. Effects of Schistosoma mansoni on the Neutral and Polar Lipids in the Liver, Spleen, and Small Intestine of Mice as Determined by High-Performance Thin-Layer Chromatography. J. Planar Chromatogr.- Mod. TLC 2012, 25, 259–261. DOI: 10.1556/JPC.25.2012.3.12.
  • Ujihara, M.; Nakajima, K.; Yamamoto, M.; Teraishi, M.; Uchida, Y.; Akiyama, M.; Shimizu, M.; Sano, M. Epidermal Triglyceride Levels Are Correlated with Severity of Ichthyosis in Dorfman-Chanarin syndrome. J. Dermatol. Sci. 2010, 57, 102–107. DOI: 10.1016/j.jdermsci.2009.10.016.
  • AhYoung, A. P.; Egea, P. F. Determining the Lipid-Binding Specificity of SMP Domains: An ERMES Subunit as a Case Study. In Intracellular Lipid Transport. Methods and Protocols. Methods in Molecular Biology 1949; Drin, G., Ed.; Humana Press: New York, 2019; ch. 16, pp 213–235. DOI: 10.1007/978-1-4939-9136-5_16.
  • Backman, A. P. E.; Halin, J.; Kjellberg, M. A.; Mattjus, P. Indirect Lipid Transfer Protein Activity Measurements Using Quantification of Glycosphingolipid Production. In Intracellular Lipid Transport. Methods and Protocols. Methods in Molecular Biology 1949; Drin, G., Ed.; Humana Press: New York, 2019; ch. 9, pp 105–114. DOI: 10.1007/978-1-4939-9136-5_9.
  • Schwarzmann, G. Synthesis of Fluorescent Membrane-Spanning Lipids for Studies of Lipid Transfer and Membrane Fusion. In: Intracellular Lipid Transport. Methods and Protocols. Methods in Molecular Biology 1949; Drin, G., Ed.; Humana Press: New York, 2019; ch. 21, pp 307–324. DOI: 10.1007/978-1-4939-9136-5_21.
  • Nomoto, Y.; Itaya, K.; Watanabe, T.; Yamashita, T.; Okazaki, T.; Tokudome, Y. Epidermal Permeability Barrier Function and Sphingolipid Content in the Skin of Sphingomyelin Synthase 2 Deficient Mice. Exp. Dermatol. 2018, 27, 827–832. DOI: 10.1111/exd.13497.
  • Neubert, R. H. H.; Bayrak, O.; Steinbach, S.; Sonnenberger, S.; Dobner, B. Development and Validation of Analytical Methods for the Detection and Quantification of a Novel Dimeric Ceramide in Stratum Corneum and Other Layers of the Skin. Chromatographia 2016, 79, 1615–1624. DOI: 10.1007/s10337-016-3187-9.
  • Ochalek, M.; Heissler, S.; Wohlrab, J.; Neubert, R. H. H. Characterization of lipid model membranes designed for studying impact of ceramide species on drug diffusion and penetration. Eur. J. Pharm. Biopharm. 2012, 81, 113–120. DOI: 10.1016/j.ejpb.2012.02.002.
  • Opitz, A.; Wirtz, M.; Melchior, D.; Mehling, A.; Kling, H.-W.; Neubert, R. R. H. Improved Method for Stratum Corneum Lipid Analysis by Automated Multiple Development HPTLC. Chromatographia 2011, 73, 559–565. DOI: 10.1007/s10337-011-1913-x.
  • Neumann, A.; Brogden, G.; Jerjomiceva, N.; Brodesser, S.; Naim, H. Y.; von Köckritz-Blickwede, M. Lipid Alterations in Human Blood-Derived Neutrophils Lead to Formation of Neutrophil Extracellular Traps. Eur. J. Cell Biol. 2014, 93, 347–354. DOI: 10.1016/j.ejcb.2014.07.005.
  • Kabrodt, K.; Lüttich, J.; Dittler, I.; Schellenberg, I. Improved HPTLC Separation of Lipids using Automated Multiple Development (AMD) and Identification with the TLC-MS-Interface. Presented at the HPTLC 2011- International Symposium for High-Performance Thin-Layer Chromatography, Basel, Switzerland, July 2011, Proceedings, p. 63.
  • Jamin, E. L.; Jacques, C.; Jourdes, L.; Tabet, J.-C.; Borotra, N.; Bessou-Touya, S.; Debrauwer, L.; Duplan, H. Identification of Lipids of the Stratum Corneum by High Performance Thin Layer Chromatography and Mass Spectrometry. Eur. J. Mass Spectrom. 2019, 25, 278–290. DOI: 10.1177/1469066718815380.
  • Ellnain, M.; Hubicka, U.; Żuromska, B.; Janeczko, Z.; Krzek, J. Densitometric Quantification of Monogalactosyldiacylglycerol (MGDG) and Digalactosyldiacylglycerol (DGDG) in Extracts of Fresh Samples of Erigeron Canadensis Collected at Different Stages of. Growth J. Planar Chromatogr.- Mod. TLC 2011, 24, 248–252. DOI: 10.1556/JPC.24.2011.3.14.
  • Lobasso, S.; Vitale, R.; Lopalco, P.; Corcelli, A. Haloferax volcanii, as a Novel Tool for Producing Mammalian Olfactory Receptors Embedded in Archaeal Lipid Bilayer. Life 2015, 5, 770–782. DOI: 10.3390/life5010770.
  • Harris, S. P.; Fujiwara, N.; Mealey, R. H.; Alperin, D. C.; Naka, T.; Goda, R.; Hines, S. A. Identification of Rhodococcus equi Lipids Recognized by Host Cytotoxic T Lymphocytes. Microbiology 2010, 156, 1836–1847. DOI: 10.1099/mic.0.035915-0.
  • Ravi, C.; Gowsalya, R.; Nachiappan, V. Impaired GCR1 Transcription Resulted in Defective Inositol Levels, Vacuolar Structure and Autophagy in Saccharomyces cerevisiae. Curr. Genet. 2019, 65, 995–1014. DOI: 10.1007/s00294-019-00954-2.
  • Dąbrowska, M.; Sokalska, K.; Gumułka, P.; Binert-Kusztal, Ż.; Starek, M. Quantification of Omega-3 Fatty Acids in Dietary Supplements and Cooking Products Available on the Polish Market by Thin-Layer Chromatography–Densitometry. J. Planar Chromatogr.- Mod. TLC 2019, 32, 13–24. DOI: 10.1556/1006.2019.32.1.2.
  • Fedosov, S. N.; Jesper, B.; Xuebing, X. Analysis of Biodiesel Conversion Using Thin Layer Chromatography and Nonlinear Calibration Curves. J. Chromatogr. A 2011, 1218, 2785–2792. DOI: 10.1016/j.chroma.2011.01.067.
  • Morlock, G. E.; Klingelhofer, I. Liquid Chromatography-Bioassay-Mass Spectrometry for Profiling of Physiologically Active Food. Anal. Chem. 2014, 86, 8289–8295. DOI: 10.1021/ac501723j.
  • Kamimiya, H.; Suzuki, Y.; Mathew, A.; Kabayama, K.; Kojima, H.; Kushi, Y. Simple and Rapid Removal of the Interference in Gangliosides Extracted from HPTLC Spot on MALDI-TOF MS Analysis. Anal. Methods 2013, 5, 6617–6621. DOI: 10.1039/c3ay41011k.
  • Wiseman, J. M.; Li, J. B. Elution, Partial Separation, and Identification of Lipids Directly from Tissue Slices on Planar Chromatography Media by Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2010, 82, 8866–8874. DOI: 10.1021/ac1016453.
  • Helmy, F.; Morris, A. A Comparative Study of the Lipid Composition of the Brain of Chicken and Rat during Myelination. A Chromatographic and Densitometric Analysis. J. Planar Chromatogr.- Mod. TLC 2011, 24, 325–330. DOI: 10.1556/JPC.24.2011.4.10.
  • Batubara, A.; Carolan, V. A.; Clench, M. R.; Loadman, P. M.; Sutton, C.; Shnyder, S. D. Thin-Layer Chromatography/Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging for the Analysis of Phospholipids in LS174T Colorectal Adenocarcinoma Xenografts Treated with the Vascular Disrupting Agent DMXAA. Rapid Commun. Mass Spectrom. 2015, 29, 1288–1296. DOI: 10.1002/rcm.7223.
  • Chauhan, S.; Sharma, A.; Upadhyay, N. K.; Singh, G.; Ranjan Lal, U.; Goyal, R. In-Vitro Osteoblast Proliferation and In-Vivo anti-Osteoporotic Activity of Bombax Ceiba with Quantification of Lupeol, Gallic Acid and β-Sitosterol by HPTLC and HPLC. BMC Complement. Altern. Med. 2018, 18, 233. DOI: 10.1186/s12906-018-2299-1.
  • Agatonovic-Kustrin, S.; Kustrin, E.; Gegechkori, V.; Morton, D. W. High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species. Mar. Drugs 2019, 17, 148–162. DOI: 10.3390/md17030148.
  • Zhang, Y.; Baycin-Hizal, D.; Kumar, A.; Priola, J.; Bahri, M.; Heffner, K. M.; Wang, M.; Han, X.; Bowen, M. A.; Betenbaugh, M. J. High-Throughput Lipidomic and Transcriptomic Analysis to Compare SP2/0, CHO, and HEK-293 Mammalian Cell Lines. Anal. Chem. 2017, 89, 1477–1485. DOI: 10.1021/acs.analchem.6b02984.
  • Cebolla, V. L.; Mateos, E.; Garriga, R.; Jarne, C.; Membrado, L.; Cossío, F. P.; Gálvez, E. M.; Matt, M.; Delgado-Camón, A. Changes in Fluorescent Emission Due to Non-Covalent Interactions as a General Detection Procedure for Thin-Layer Chromatography. Chemphyschem 2012, 13, 291–299. DOI: 10.1002/cphc.201100590.
  • Seng, J. A.; Ellis, S. R.; Hughes, J. R.; Maccarone, A. T.; Truscott, R. J. W.; Blanksby, S. J.; Mitchell, T. W. Characterisation of Sphingolipids in the Human Lens by Thin Layer Chromatography-Desorption Electrospray Ionisation Mass Spectrometry. Biochim. Biophys. Acta 2014, 1841, 1285–1291. DOI: 10.1016/j.bbalip.2014.05.006.
  • Paglia, G.; Ifa, D. R.; Wu, C.; Corso, G.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry Analysis of Lipids after Two-Dimensional High-Performance Thin-Layer Chromatography Partial Separation. Anal. Chem. 2010, 82, 1744–1750. DOI: 10.1021/ac902325j.
  • Torretta, E.; Fania, C.; Vasso, M.; Gelfi, C. HPTLC-MALDI MS for (Glyco)Sphingolipid Multiplexing in Tissues and Blood: A Promising Strategy for Biomarker Discovery and Clinical Applications. Electrophoresis 2016, 37, 2036–2049. DOI: 10.1002/elps.201600094.
  • Torretta, E.; Vasso, M.; Fania, C.; Capitanio, D.; Bergante, S.; Piccoli, M.; Tettamanti, G.; Anastasia, L.; Gelfi, C. Application of Direct HPTLC-MALDI for the Qualitative and Quantitative Profiling of Neutral and Acidic Glycosphingolipids: The Case of NEU3 Overexpressing C2C12 Murine Myoblasts. Electrophoresis 2014, 35, 1319–1328. DOI: 10.1002/elps.201300474.
  • Engel, K. M.; Dzyuba, V.; Dzyuba, B.; Schiller, J. Different Glycolipids in Sperm from Different Freshwater Fishes – A High-Performance Thin-Layer Chromatography/Electrospray Ionization Mass Spectrometry Study. Rapid Commun. Mass. Spectrom. 2020, 34, e8875. DOI: 10.1002/rcm.8875.
  • High Resolution Lipid Profiling and Identification by Hyphenated HPTLC-MALDI-TOF/TOF, Application Note # MT-101; Bruker Daltonics: Bremen, Germany, 2010.
  • Kondakova, T.; Merlet Machour, N.; Duclairoir Poc, C. HPTLC-MALDI TOF MS Imaging Analysis of Phospholipids. In Lipidomics, Neuromethods; Wood, P., Ed.; Humana Press, Springer: New York, 2017; vol. 125, ch. 12, pp 163–173. DOI: 10.1007/978-1-4939-6946-3_12.
  • Sicard, R.; Landgraf, R. High-Performance Chromatographic Separation of Cerebrosides. In Lipidomics: Methods and Protocols, Methods in Molecular Biology; Bhattacharya, S. K.,; Humana Press: New York, 2017, vol. 1609, ch. 7, pp 57–63.
  • Meisen, I.; Rosenbrück, R.; Galla, H.-J.; Hüwel, S.; Kouzel, I. U.; Mormann, M.; Karch, H.; Müthing, J. Expression of Shiga Toxin 2e Glycosphingolipid Receptors of Primary Porcine Brain Endothelial Cells and Toxin-Mediated Breakdown of the blood-brain barrier. J. Glycobiol. 2013, 23, 745–759. DOI: 10.1093/glycob/cwt013.
  • Kouzel, I. U.; Pirkl, A.; Pohlentz, G.; Soltwisch, J.; Dreisewerd, K.; Karch, H.; Müthing, J. Progress in Detection and Structural Characterization of Glycosphingolipids in Crude Lipid Extracts by Enzymatic Phospholipid Disintegration Combined with Thin-Layer Chromatography Immunodetection and IR-MALDI Mass Spectrometry. Anal. Chem. 2014, 86, 1215–1222. DOI: 10.1021/ac4035696.
  • Sakuraba, H.; Tsukimura, T.; Togawa, T.; Tanaka, T.; Ohtsuka, T.; Sato, A.; Shiga, T.; Saito, S.; Ohno, K. Fabry Disease in a Japanese Population-Molecular and Biochemical Characteristics. Mol. Genet. Metab. Rep. 2018, 17, 73–79. DOI: 10.1016/j.ymgmr.2018.10.004.
  • Haili, N.; Louap, J.; Canonge, M.; Jagic, F.; Louis-Mondesir, C.; Chardot, T.; Briozzo, P. Expression of Soluble Forms of Yeast Diacylglycerol Acyltransferase 2 That Integrate a Broad Range of Saturated Fatty Acids in Triacylglycerols. PLoS One. 2016, 11, e0165431. DOI: 10.1371/journal.pone.0165431.
  • Höglinger, D. Bi- and Trifunctional Lipids for Visualization of Sphingolipid Dynamics within the Cell. In Intracellular Lipid Transport. Methods and Protocols. Methods in Molecular Biology 1949; Drin, G., Ed.; Humana Press: New York, 2019; ch. 8, pp 95–103. DOI: 10.1007/978-1-4939-9136-5_8.
  • Höglinger, D.; Nadler, A.; Haberkant, P.; Kirkpatrick, J.; Schifferer, M.; Stein, F.; Hauke, S.; Porter, F. D.; Schultz, C. Trifunctional Lipid Probes for Comprehensive Studies of Single Lipid Species in Living Cells. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1566–1571. DOI: 10.1073/pnas.1611096114.
  • Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. IJMS 2017, 18, 708. DOI: 10.3390/ijms18040708.
  • Krüger, S.; Bürmann, L.; Morlock, G. E. Comparison and Characterization of Soybean and Sunflower Lecithins Used for Chocolate Production by High-Performance Thin-Layer Chromatography with Fluorescence Detection and Electrospray Mass Spectrometry. J. Agric Food Chem. 2015, 63, 2893–2901. DOI: 10.1021/jf506332f.
  • Alves, E.; Melo, T.; Simoes, C.; Faustino, M. A. F.; Tome, J. P. C.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Cunha, A.; Gomes, P.; Domingues, P.; et al. Photodynamic Oxidation of Staphylococcus warneri Membrane Phospholipids: New Insights Based on Lipidomics. Rapid Commun. Mass Spectrom. 2013, 27, 1607–1618. DOI: 10.1002/rcm.6614.
  • Popkova, Y.; Meusel, A.; Breitfeld, J.; Schleinitz, D.; Hirrlinger, J.; Dannenberger, D.; Kovacs, P.; Schiller, J. Nutrition-Dependent Changes of Mouse Adipose Tissue Compositions Monitored by NMR, MS, and Chromatographic Methods. Anal. Bioanal. Chem. 2015, 407, 5113–5123. DOI: 10.1007/s00216-015-8551-3.
  • Shinn, S.; Liyanage, R.; Lay, J.; Proctor, A. Improved Fatty Acid Analysis of Conjugated Linoleic Acid Rich Egg Yolk Triacylglycerols and Phospholipid Species. J. Agric. Food Chem. 2014, 62, 6608–6615. DOI: 10.1021/jf501100y.
  • Kondakova, T.; Merlet-Machour, N.; Chapelle, M.; Preterre, D.; Dionnet, F.; Feuilloley, M.; Orange, N.; Duclairoir Poc, C. A New Study of the Bacterial Lipidome: HPTLC-MALDI-TOF Imaging Enlightening the Presence of Phosphatidylcholine in Airborne Pseudomonas fluorescens MFAF76a. Res. Microbiol. 2015, 166, 1–8. DOI: 10.1016/j.resmic.2014.11.003.
  • Wegener, J.; Zschörnig, K.; Onischke, K.; Fuchs, B.; Schiller, J.; Müller, K. Conservation of Honey Bee (Apis mellifera) Sperm Phospholipids during Storage in the Bee Queen-A TLC/MALDI-TOF MS Study. Exp. Gerontol. 2013, 48, 213–222. DOI: 10.1016/j.exger.2012.12.009.
  • Frohlich, S. M.; Archodoulaki, V.-M.; Allmaier, G.; Marchetti-Deschmann, M. MALDI-TOF Mass Spectrometry Imaging Reveals Molecular Level Changes in Ultrahigh Molecular Weight Polyethylene Joint Implants in Correlation with Lipid Adsorption. Anal. Chem. 2014, 86, 9723–9732. DOI: 10.1021/ac5025232.
  • Teuber, K.; Riemer, T.; Schiller, J. Thin-Layer Chromatography Combined with MALDI-TOF-MS and 31P-NMR to Study Possible Selective Bindings of Phospholipids to Silica Gel. Anal. Bioanal. Chem. 2010, 398, 2833–2842. DOI: 10.1007/s00216-010-4064-2.
  • Pinault, M.; Guimaraes, C.; Dumas, J. F.; Servais, S.; Chevalier, S.; Besson, P.; Goupille, C. A 1D High Performance Thin Layer Chromatography. Method Validated to Quantify Phospholipids Including Cardiolipin and Monolysocardiolipin from Biological Samples. Eur. J. Lipid Sci. Technol. 2020, 122, 1900240. DOI: 10.1002/ejlt.201900240.
  • Abbes, I.; Rihouey, C.; Hardouin, J.; Jouenne, T.; De, E.; Alexandre, S. Identification by Mass Spectrometry of Glucosaminylphosphatidylglycerol, a Phosphatidylglycerol Derivative, Produced by Pseudomonas aeruginosa. Rapid Commun. Mass Spectrom. 2018, 32, 2113–2121. DOI: 10.1002/rcm.8277.
  • Reisberg, M.; Arnold, N.; Bisrat, D.; Asres, K.; Neubert, R. H. H.; Dräger, B. Quantification of Glycosylceramides in Plants by Automated Multiple Development–High-Performance Thin-Layer Chromatography. J. Planar Chromatogr.- Mod. TLC 2017, 30, 460–466. DOI: 10.1556/1006.2017.30.6.1.
  • Ruh, H.; Sandhoff, R.; Meyer, B.; Gretz, N.; Hopf, C. Quantitative Characterization of Tissue Globotetraosylceramides in a Rat Model of Polycystic Kidney Disease by Primadrop Sample Preparation and Indirect High-Performance Thin Layer Chromatography-Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight-Mass Spectrometry with Automated Data Acquisition. Anal. Chem. 2013, 85, 6233–6240. DOI: 10.1021/ac400931u.
  • Park, H.; Zhou, Y.; Costello, C. E. Direct Analysis of Sialylated or Sulfated Glycosphingolipids and Other Polar and Neutral Lipids Using TLC-MS Interfaces. J. Lipid Res. 2014, 55, 773–781. DOI: 10.1194/jlr.D046128.
  • Suzuki, A.; Miyazaki, M.; Matsuda, J.; Yoneshige, A. High-Performance Thin-Layer Chromatography/Mass Spectrometry for the Analysis of Neutral Glycosphingolipids. Biochim. Biophys. Acta 2011, 1811, 861–874. DOI: 10.1016/j.bbalip.2011.06.018.
  • Al-Daghri, N. M.; Torretta, E.; Barbacini, P.; Asare, H.; Ricci, C.; Capitanio, D.; Guerini, F. R.; Sabico, S. B.; Alokail, M. S.; Clerici, M.; Gelfi, C. Sphingolipid Serum Profiling in Vitamin D Deficient and Dyslipidemic Obese Dimorphic Adults. Sci. Rep. 2019, 9, 16664. DOI: 10.1038/s41598-019-53122-4.
  • Torreta, E.; Arosio, B.; Barbacini, P.; Casati, M.; Capitanio, D.; Mancuso, R.; Mari, D.; Cesari, M.; Clerici, M.; Gelfi, C. Particular CSF Sphingolipid Patterns Identify iNPH and AD Patients. Sci. Rep. 2018, 8, 13639. DOI: 10.1038/s41598-018-31756-0.
  • Oellig, C.; Brändle, K.; Schwack, W. Characterization of E 471 Food Emulsifiers by High-Performance Thin-Layer Chromatography-Fluorescence Detection. J. Chromatogr. A 2018, 1558, 69–76. DOI: 10.1016/j.chroma.2018.05.010.
  • Oellig, C.; Link, K.; Schwack, W. Characterization of E 472 Food Emulsifiers by High-Performance Thin-Layer Chromatography with Fluorescence Detection and Mass Spectrometry. J. Chromatogr. A 2020, 1618, 460874. DOI: 10.1016/j.chroma.2020.460874.
  • Chattopadhyay, S.; Das, S.; Sen, R. Rapide and Precise Estimation of Biodiesel by High Performance Thin Layer Chromatography. Appl. Energy 2011, 88, 5188–5192. DOI: 10.1016/j.apenergy.2011.07.027.
  • Preet, R.; Gupta, R. C.; Pradhan, S. K. Chromatographic Determination of β-Sitosterol, Lupeol, and Oleanolic Acid in Leptadenia pyrotechnica (Forsk.) Decne.– A Botanical Source of the Ayurvedic Drug Jivanti. J. Planar Chromatogr.- Mod. TLC 2018, 31, 150–154. DOI: 10.1556/1006.2018.31.2.9.
  • Jouhet, J.; Lupette, J.; Olivier, C.; Magneschi, L.; Bedhomme, M.; Collin, S.; Roy, S.; Marechal, E.; Rebeille, F. LC-MS/MS versus TLC plus GC Methods: Consistency of Glycerolipid and Fatty Acid Profiles in Microalgae and Higher Plant Cells and Effect of a Nitrogen Starvation. PLoS One. 2017, 12, e0182423 DOI: 10.1371/journal.pone.0182423.
  • Jarne, C.; Cebolla, V. L.; Membrado, L.; Galbán, J.; Savirón, M.; Orduna, J.; Garriga, R. Separation and Profiling of Monoglycerides in Biodiesel Using a Hyphenated Technique Based on High Performance Thin-Layer Chromatography. Fuel 2016, 177, 244–250. DOI: 10.1016/j.fuel.2016.03.011.
  • Alberici, L. C.; Oliveira, H. C. F.; Catharino, R. R.; Vercesi, A. E.; Eberlin, M. N.; Alberici, R. M. Distinct Hepatic Lipid Profile of Hypertriglyceridemic Mice Determined by Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Anal. Bioanal. Chem. 2011, 401, 1651–1659. DOI: 10.1007/s00216-011-5208-8.
  • Singhto, N.; Vinaiphat, A.; Thongboonkerd, V. Discrimination of Urinary Exosomes from Microvesicles by Lipidomics Using Thin Layer Liquid Chromatography (TLC) Coupled with MALDI-TOF Mass Spectrometry. Sci. Rep. 2019, 9, 13834 DOI: 10.1038/s41598-019-50195-z.
  • Meullemiestre, A.; Breil, C.; Abert-Vian, M.; Chemat, F. Manothermosonication as a Useful Tool for Lipid Extraction from Oleaginous Microorganisms. Ultrason. Sonochem. 2017, 37, 216–221. DOI: 10.1016/j.ultsonch.2017.01.014.
  • Aymé, L.; Baud, S.; Dubreucq, B.; Joffre, F.; Chardot, T. Function and Localization of the Arabidopsis thaliana Diacylglycerol Acyltransferase DGAT2 Expressed in Yeast. PLoS One. 2014, 9, e92237 DOI: 10.1371/journal.pone.0092237.
  • Aymé, L.; Jolivet, P.; Nicaud, J.-M.; Chardot, T. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica. PLoS One. 2015, 10, e0143113 DOI: 10.1371/journal.pone.0143113.
  • Martínez, R.; Navarro-Martín, L.; van Antro, M.; Fuertes, I.; Casado, M.; Barata, C.; Piña, B. Changes in Lipid Profiles Induced by Bisphenol A (BPA) in Zebrafish Eleutheroembryos during the Yolk Sac Absorption Stage. Chemosphere 2020, 246, 125704. DOI: 10.1016/j.chemosphere.2019.125704.
  • Mollerup Sørensen, D.; Waldal Holen, H.; Torbøl Pedersen, J.; Juel Martens, H.; Silvestro, D.; Dimitrov Stanchev, L.; Rute Costa, S.; Günther Pomorski, T.; López-Marqués, R. L.; Palmgren, M. The P5A ATPase Spf1p is Stimulated by Phosphatidylinositol 4-Phosphate and Influences Cellular Sterol Homeostasis. Mol. Biol. Cell. 2019, 30, 1069–1084. DOI: 10.1091/mbc.E18-06-0365.
  • AhYoung, A. P.; Jiang, J.; Zhang, J.; Khoi Dang, X.; Loo, J. A.; Zhou, Z. H.; Egea, P. F. Conserved SMP Domains of the ERMES Complex Bind Phospholipids and Mediate Tether Assembly. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, E3179–E3188. PNAS. DOI: 10.1073/pnas.1422363112.
  • Pieke, E. N.; Smedsgaard, J.; Granby, K. Exploring the Chemistry of Complex Samples by Tentative Identification and Semiquantification: A Food Contact Material case. J. Mass Spectrom. 2018, 53, 323–335. DOI: 10.1002/jms.4052.
  • Pieke, E. N.; Granby, K.; Trier, X.; Smedsgaard, J. A Framework to Estimate Concentrations of Potentially Unknown Substances by Semi-Quantification in Liquid Chromatography Electrospray Ionization Mass Spectrometry. Anal. Chim. Acta 2017, 975, 30–41. DOI: 10.1016/j.aca.2017.03.054.
  • Han, X. L. Comprehensive Mass Spectrometry of Lipids; John Wiley & Sons: Hoboken, NJ, 2016; ch. 14, pp 307. DOI: 10.1002/9781119085263.ch14.
  • Skotland, T.; Sandvig, K.; Llorente, A. Lipids in Exosomes: Current Knowledge and the Way Forward. Prog. Lipid Res. 2017, 66, 30–41. DOI: 10.1016/j.plipres.2017.03.001.
  • Skotland, T.; Hessvik, N. P.; Sandvig, K.; Llorente, A. Exosomal Lipid Composition and the Role of Ether Lipids and Phosphoinositides in Exosome Biology. J. Lipid Res. 2019, 60, 9–18. DOI: 10.1194/jlr.R084343.
  • Fuertes, I.; Jordao, R.; Casas, J.; Barata, C. Allocation of Glycerolipids and Glycerophospholipids from Adults to Eggs in Daphnia Magna: Perturbations by Compounds That Enhance Lipid Droplet accumulation. Environ. Pollut. 2018, 242, 1702–1710. DOI: 10.1016/j.envpol.2018.07.102.
  • Bui, Q. H. D.; Fried, B.; Sherma, J. Thin-Layer Chromatographic Analysis of Lipids and Lipophilic Pigments in Snails. J. Planar Chromatogr.- Mod. TLC 2016, 29, 99–107. DOI: 10.1556/1006.2016.29.2.2.
  • Sherma, J. De Grandchamp , Review of Advances in Planar Radiochromatography. J. Liq. Chromatogr. Rel. Technol. 2015, 38, 381–389. DOI: 10.1080/10826076.2014.941265.
  • Yamaji, T.; Sekizuka, T.; Tachida, Y.; Sakuma, C.; Morimoto, K.; Kuroda, M.; Hanada, K. A CRISPR Screen Identifies LAPTM4A and TM9SF Proteins as Glycolipid-Regulating Factors. iScience 2019, 11, 409–424. DOI: 10.1016/j.isci.2018.12.039.
  • Yamaji, T.; Horie, A.; Tachida, Y.; Sakuma, C.; Suzuki, Y.; Kushi, Y.; Hanada, K. Role of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide. IJMS 2016, 17, 1761. DOI: 10.3390/ijms17101761.
  • Yamaji, T.; Hanada, K. Establishment of HeLa Cell Mutants Deficient in Sphingolipid-Related Genes Using TALENs. PLoS One. 2014, 9, e88124. DOI: 10.1371/journal.pone.0088124.
  • Yamaji, T.; Nishikawa, K.; Hanada, K. Transmembrane BAX Inhibitor Motif Containing (TMBIM) Family Proteins Perturbs a Trans-Golgi Network Enzyme, Gb3 Synthase, and Reduces Gb3 Biosynthesis. J. Biol. Chem. 2010, 285, 35505–35518. DOI: 10.1074/jbc.M110.154229.
  • Niekamp, P.; Guzman, G.; Leier, H.; Rashidfarrokhi, A.; Richina, V.; Holthius, J.; Tafesse, F. G. Sphingomyelin is Critical in Organizing Phosphoinositide Dynamics during Phagocytic Uptake of Mycobacterium tuberculosis. BiRxiv 2019, march. DOI: 10.1101/565226.
  • Tamura, Y.; Kojima, R.; Endo, T. Advanced in Vitro Assay System to Measure Phosphatidylserine and Phosphatidylethanolamine Transport at ER/Mitochondria Interface. In Intracellular Lipid Transport. Methods and Protocols. Methods in Molecular Biology 1949; Drin, G., Ed.; Humana Press: New York, 2019; ch. 6, pp 57–66. DOI: 10.1007/978-1-4939-9136-5_6.
  • Tamura, Y.; Harada, Y.; Nishikawa, S-I.; Yamano, K.; Kamiya, M.; Shiota, T.; Kuroda, T.; Kuge, O.; Sesaki, H.; Imai, K.; et al. Tam41 is a CDP-Diacylglycerol Synthase Required for Cardiolipin Biosynthesis in Mitochondria. Cell Metab. 2013, 17, 709–718. DOI: 10.1016/j.cmet.2013.03.018.
  • Lin, Y.; Zheng, L.; Bogdanov, M. Measurement of Lysophospholipid Transport across the Membrane Using Escherichia coli Spheroplasts. In Intracellular Lipid Transport. Methods and Protocols. Methods in Molecular Biology 1949; Drin, G., Ed.; Humana Press: New York, 2019; ch. 13, pp 165–180. DOI: 10.1007/978-1-4939-9136-5_13.
  • Bergante, S.; Torretta, E.; Creo, P.; Sessarego, N.; Papini, N.; Piccoli, M.; Fania, C.; Cirillo, F.; Conforti, E.; Ghiroldi, A.; et al. Gangliosides as a Potential New Class of Stem Cell Markers: The Case of GD1a in Human Bone Marrow Mesenchymal Stem Cells. J. Lipid Res. 2014, 55, 549–560. DOI: 10.1194/jlr.M046672.
  • Kobayashi, T.; Stang, E.; Fang, K. S.; de Moerloose, P.; Parton, R. G.; Gruenberg, J. A Lipid Associated with the Antiphospholipid Syndrome Regulates Endosome Structure and Function. Nature 1998, 392, 193–197. DOI: 10.1038/32440.
  • Sherma, J.; Rabel, F. Review of Advances in Planar Chromatography-Mass Spectrometry Published in the Period 2015–2019. J. Liq. Chromatogr. Rel. Technol. 2020, 43, 394–412. DOI: 10.1080/10826076.2020.1725561.
  • Kertesz, V.; Van Berkel, G. J. Fully Automated Liquid Extraction-Based Surface Sampling and Ionization Using a Chip-Based Robotic Nanoelectrospray Platform. J. Mass Spectrom. 2010, 45, 252–260. DOI: 10.1002/jms.1709.
  • Walworth, M. J.; Stankovich, J. J.; Van Berkel, G. J.; Schulz, M.; Minarik, S.; Nichols, J.; Reich, E. Hydrophobic Treatment Enabling Analysis of Wettable Surfaces Using a Liquid Microjunction Surface Sampling Probe/Electrospray Ionization-Mass Spectrometry System. Anal. Chem. 2011, 83, 591–597. DOI: 10.1021/ac102634e.
  • Himmelsbach, M.; Varesio, E.; Hopfgartner, G. Liquid Extraction Surface Analysis (LESA) of Hydrophobic TLC Plates Coupled to Chip-Based Nanoelectrospray High-Resolution Mass Spectrometry. Chimia 2014, 68, 150–154. DOI: 10.2533/chimia.2014.150.
  • Cebolla, V. L.; Membrado, L.; Vela, J.; Jarne, C.; Lapieza, M. P. HPTLC of Lipid-Based Mixtures in Different Matrices: Combination of Densitometry and Mass Spectrometry for Obtaining Qualitative and Quantitative Sample Information. Presented at the HPTLC Asia 2018, Bangkok, November 19, 2018.
  • Han, X. L. Comprehensive Mass Spectrometry of Lipids; John Wiley & Sons: Hoboken, NJ, 2016; ch. 2, pp 27–28. DOI: 10.1002/9781119085263.ch1.
  • Fuchs, B.; Süss, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid Analysis by Thin-Layer Chromatography-A Review of the Current State. J. Chromatogr. A 2011, 1218, 2754–2774. DOI: 10.1016/j.chroma.2010.11.066.
  • Fuchs, B.; Suss, R.; Schiller, J. An Update of MALDI-TOF Mass Spectrometry in Lipid Research. Prog. Lipid Res. 2010, 49, 450–475. DOI: 10.1016/j.plipres.2010.07.001.
  • Fuchs, B.; Süß, R.; Nimptsch, A.; Schiller, J. MALDI-TOF-MS Directly Combined with TLC: A Review of the Current State. Chroma 2009, 69, 95–S105. DOI: 10.1365/s10337-008-0661-z.
  • Fuchs, B. Analysis of Phospolipids and Glycolipids by Thin-Layer Chromatography-Matrix-Assisted Laser Desorption and Ionization Mass Spectrometry. J. Chromatogr. A 2012, 1259, 62–73. DOI: 10.1016/j.chroma.2012.03.068.
  • Mernie, E. G.; Tolesa, L. D.; Lee, M.-J.; Tseng, M.; C.;h Chen, Y.-J. Direct Oligosaccharide Profiling Using Thin-Layer Chromatography Coupled with Ionic Liquid-Stabilized Nanomatrix-Assisted Laser Desorption-Ionization Mass Spectrometry. Anal. Chem. 2019, 91, 11155–11544. DOI: 10.1021/acs.analchem.9b01241.
  • Griesinger, H.; Fuchs, B.; Süß, R.; Matheis, K.; Schulz, M.; Schiller, J. Stationary Phase Thickness Determines the Quality of Thin-Layer Chromatography/Matrix-Assisted Laser Desorption and Ionization Mass Spectra of Lipids. Anal. Biochem. 2014, 451, 45–47. DOI: 10.1016/j.ab.2014.02.002.
  • Griesinger, H.; Süβ, R.; Leopold, J.; Schulz, M.; Schiller, J. The Presence of the Fluorescence Indicator (F254) Changes the TLC Migration Properties of Selected Phospholipids. J. Planar Chromatogr.- Mod. TLC 2018, 31, 409–411. DOI: 10.1556/1006.2018.31.5.10.
  • Lay, J. O.; Jr.; Gidden, J.; Liyanage, R.; Emerson, B.; Durham, B. Rapid Characterization of Lipids by MALDI MS. Part 2: Artifacts, Ion Suppression, and TLC MALDI Imaging. Lipid Technol. 2012, 24, 36–40. DOI: 10.1002/lite.201200174.
  • Taki, T. TLC-Blot (Far-Eastern Blot) and Its Application to Functional Lipidomics. In Detection of Blotted Proteins: Methods and Protocols. Methods in Molecular Biology Methods; Kurien, B. T.; Scofield, R. H., Ed.; Springer: New York, 2015, Vol. 1314, pp 219–241.
  • Taki, T. An Approach to Glycobiology from Glycolipidomics: Ganglioside Molecular Scanning in the Brains of Patients with Alzheimer's Disease by TLC-Blot/Matrix Assisted Laser Desorption/Ionization-Time of Flight MS. Biol. Pharm. Bull. 2012, 35, 1642–1647. DOI: 10.1248/bpb.b12-00400.
  • Valdes-Gonzalez, T.; Goto-Inoue, N.; Hirano, W.; Ishiyama, H.; Hayasaka, T.; Setou, M.; Taki, T. New Approach for Glyco- and Lipidomics-Molecular Scanning of Human Brain Gangliosides by TLC-Blot and MALDI-QIT-TOF MS. J. Neurochem. 2011, 116, 678–683. DOI: 10.1111/j.1471-4159.2010.07152.x.
  • Valdes-Gonzalez, T.; Goto-Inoue, N.; Hayasaka, T.; Ishiyama, H.; Setou, M.; Taki, T. Imaging Technology of Complex Lipid Molecular Species by a Combination of TLC-Blot and MALDI-TOF. Special Reference to Human Brain Ganglioside Molecular Species. J. Glycom. Lipidom. 2012, S2, 004. DOI: 10.4172/2153-0637.S2-004.
  • Muthing, J.; Distler, U. Advances on the Compositional Analysis of Glycosphingolipids Combining Thin-Layer Chromatography with Mass Spectrometry. Mass Spectrom. Rev. 2010, 29, 425–479. DOI: 10.1002/mas.20253.
  • Leopold, J.; Popkova, Y.; Engel, K. M.; Schiller, J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules 2018, 8, 173–198. DOI: 10.3390/biom8040173.
  • Schiller, J. The Simple Beauty of TLC-MALDI-MS. The Analytical Scientist. https://theanalyticalscientist.com/issues/1115/the-simple-beauty-of-tlc-maldi-ms/.
  • Schiller, J.; Fuchs, B.; Suss, R.; Popkova, Y.; Griesinger, H.; Matheis, K.; Oberle, M.; Schulz, M. TLC/MALDI MS for the Analysis of Lipids. In Planar Chromatography-Mass Spectrometry. Chromatography Science Series; Kowalska, T.; Sajewicz, M.; Sherma, J., Ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, 2016, Vol. 110, pp 213–232. DOI: doi: 10.1201/b19090_13.
  • Ellis, S. R.; Brown, S. H.; In Het Panhuis, M.; Blanksby, S. J.; Mitchell, T. W. Surface Analysis of Lipids by Mass Spectrometry: More than Just Imaging. Prog. Lipid Res. 2013, 52, 329–353. DOI: 10.1016/j.plipres.2013.04.005.
  • Ellis, S. R.; Hughes, J. R.; Mitchell, T. W.; In Het Panhuis, M.; Blanksby, S. J. Using Ambient Ozone for Assignment of Double Bond Position in Unsaturated Lipids. Analyst 2012, 137, 1100–1112. DOI: 10.1039/c1an15864c.
  • Han, X. L. Comprehensive Mass Spectrometry of Lipids; John Wiley & Sons: Hoboken, NJ, 2016; ch. 4, pp 112–114. DOI: 10.1002/9781119085263.ch1.
  • Claude, E.; Tower, M.; Lafont, R.; Wilson, I. D.; Plumb, R. S. High Performance Thin-Layer Chromatography of Plant Ecdysteroids Coupled with Desorption Electrospray Ionisation–Ion Mobility–Time of Flight High Resolution Mass Spectrometry (HPTLC/DESI/IM/ToFMS). Chromatographia 2020, 83, 1029–1035. DOI: 10.1007/s10337-020-03917-9.
  • Heep, J.; Tuchecker, P. H. K.; Gebhardt, C. R.; Dürr, M. Combination of Thin-Layer Chromatography and Mass Spectrometry Using Cluster-Induced Desorption/Ionization. ACS Omega 2019, 4, 22426–22430. DOI: 10.1021/acsomega.9b03060.
  • Rejsek, J.; Vrkoslav, V.; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvacka, J. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids. Anal. Chem. 2016, 88, 12279–12286. DOI: 10.1021/acs.analchem.6b03465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.