156
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis and sorptive properties of molecularly imprinted polymer for simultaneous isolation of catecholamines and their metabolites from biological fluids

&

References

  • Goldstein, D. Catecholamines 101. Clin. Auton. Res. 2010, 20, 331–352. DOI: 10.1007/s10286-010-0065-7.
  • Bharath, S.; Andersen, J. Catecholamines and Protein Deposition in Parkinson’s and Alzheimer’s Disease: Old Medicine, New Targets. Rejuven. Res. 2004, 7, 92–94. DOI: 10.1089/1549168041553071.
  • Umegaki, H.; Ikari, H.; Nakahata, H.; Yoshimura, J.; Endo, H.; Yamamoto, T.; Iguchi, A. Low Plasma Epinephrine in Elderly Female Subjects of Dementia of Alzheimer Type. Brain Res. 2000, 858, 67–70. DOI: 10.1016/S0006-8993(99)02440-3.
  • Tsunoda, M.; Aoyama, C.; Nomura, H.; Toyoda, T.; Matsuki, N.; Funatsu, T. Simultaneous Determination of Dopamine and 3,4-Dihydroxyacetic Acid in Mouse Striatum Using Mixed-Mode Reversed-Phase and Cation-Exchange High Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2010, 51, 712–715. DOI: 10.1016/j.jpba.2009.09.045.
  • Peaston, R.; Weinkove, C. Measurement of Catecholamines and Their Metabolites. Ann. Clin. Biochem. 2004, 41, 17–38. DOI: 10.1258/000456304322664663.
  • Lv, C.; Li, Q.; Liu, X.; He, B.; Sui, Z.; Xu, H.; Yin, Y.; Liu, R.; Bi, K. Determination of Catecholamines and Their Metabolites in Rat Urine in Ultra - Performance Liquid Chromatography – Tandem Mass Spectrometry for the Study of Identifying Potential Markers for Alzheimer’s Disease. J. Mass Spectrom. 2015, 50, 354–363. DOI: 10.1002/jms.3536.
  • He, Y.; Zhao, X.-E.; Zhu, S.; Wei, N.; Sun, J.; Zhou, Y.; Liu, S.; Liu, Z.; Chen, G.; Suo, Y.; You, J. In Situ Derivatization-Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction for the Determination of Neurotransmitters in Parkinson's Rat Brain Microdialysates by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1458, 70–78. DOI: 10.1016/j.chroma.2016.06.059.
  • Bicker, J.; Fortuna, A.; Alves, G.; Falcao, A. Liquid Chromatographic Methods for the Quantification of Catecholamines and Their Metabolites in Several Biological Samples – A Review. Anal. Chim. Acta. 2013, 768, 12–34. DOI: 10.1016/j.aca.2012.12.030.
  • Allenbrand, R.; Garg, U. Quantitation of Homovanillic Acid (HVA) and Vanillilmandelic Acid (VMA) in Urine Using Gas Chromatography-Mass Spectrometry (GC/MS). Methods Mol. Biol. 2010, 603, 261–269. DOI: 10.1007/978-1-60761-459-3_24.
  • Xu, X.; Zhang, H.; Shi, H.; Ma, C.; Cong, B.; Kang, W. Determination of Three Major Catecholamines in Human Urine by Capillary Zone Electrophoresis with Chemiluminescence Detection. Anal. Biochem. 2012, 427, 10–17. DOI: 10.1016/j.ab.2012.04.022.
  • Kanamori, T.; Isokawa, M.; Funatsu, T.; Tsunoda, M. Development of Analytical Method for Catechol Compounds in Mouse Urine Using Hydrophilic Interaction Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B 2015, 985, 142–148. DOI: 10.1016/j.jchromb.2015.01.038.
  • Kumar, A.; Hart, J.; McCalley, D. Determination of Catecholamines in Urine Using Hydrophilic Interaction Chromatography with Electrochemical Detection. J. Chromatogr. A. 2011, 1218, 3854–3861. DOI: 10.1016/j.chroma.2011.04.034.
  • Woo, H.; Yang, J.; Oh, H.; Cho, Y.; Kim, J.; Park, H.; Lee, S. A Simple Rapid Analytical Method Based on Solid – Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Determination of Free Catecholamines and Metanephrines in Urine and Its Application to Routine Clinical Analysis. Clin. Biochem. 2016, 49, 573–579. DOI: 10.1016/j.clinbiochem.2016.01.010.
  • Sadilkova, K.; Dugaw, K.; Benjamin, D.; Jack, R. M. Analysis of Vanillilmandelic and Homovanillic Acid by UPLC-MS/MS in Serum for Diagnostic Testing for Neuroblastoma. Clin. Chim. Acta. 2013, 424, 253–257. DOI: 10.1016/j.cca.2013.06.024.
  • He, X.; Gabler, J.; Yuan, C.; Wang, S.; Shi, Y.; Kozak, M. Quantitative Measurement of Plasma Free Metanephrines by Ion-Pairing Solid Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry with Porous Graphitic Carbon Column. J. Chromatogr. B. 2011, 879, 2355–2359. DOI: 10.1016/j.jchromb.2011.06.013.
  • He, H.; Carballo-Jane, E.; Tong, X.; Cohen, L. Measurement of Catecholamines in Rat and Mini-Pig Plasma and Urine by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Solid Phase Extraction. J. Chromatogr. B. 2015, 997, 154–161. DOI: 10.1016/j.jchromb.2015.05.014.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/C6CS00061D.
  • Huang, Z.; Lee, H. K. Materials-Based Approaches to Minimizing Solvent Usage in Analytical Sample Preparation. Tr. Anal. Chem. 2012, 39, 228–244. DOI: 10.1016/j.trac.2012.05.007.
  • Claude, B.; Morin, P.; Denoroy, L. Selective Solid Phase-Extraction of Catecholamines and Metanephrines from Serum Using a New Molecularly Imprinted Polymer. J. Liquid Chromatogr. Rel. Techn. 2014, 37, 2624–2638. DOI: 10.1080/10826076.2013.853310.
  • Luliński, P.; Bamburowicz-Klimkowska, M.; Dana, M.; Szutowski, M.; Maciejewska, D. Efficient Strategy for the Selective Determination of Dopamine in Human Urine by Molecularly Imprinted Solid-Phase Extraction. J. Sep. Science. 2016, 39, 895–903. DOI: 10.1002/jssc.201501159.
  • Bouri, M.; Lerma-Garcia, J.; Salghi, R.; Zougagh, M.; Rios, A. Selective Extraction and Determination of Catecholamines in Urine Samples by Using a Dopamine Magnetic Molecularly Imprinted Polymer and Capillary Electrophoresis. Talanta. 2012, 99, 897–903. DOI: 10.1016/j.talanta.2012.07.053.
  • Ma, J.; Qiu, H.; Rui, Q.; Liao, Y.; Chen, Y.; Xu, J.; Zhan, P.; Zhao, Y. Fast Determination of Catecholamines in Human Plasma Using Carboxyl - Functionalized Magnetic-Carbon Nanotube Molecularly Imprinted Polymer Followed by Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. J. Chromatogr. A. 2016, 1429, 86–96. DOI: 10.1016/j.chroma.2015.12.030.
  • Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochem. 2007, 22, 249–275. DOI: 10.1016/j.apgeochem.2006.09.010.
  • Whitcombe, M.; Rodriguez, M.; Villar, P.; Vulfson, E. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. J. Am. Chem. Soc. 1995, 117, 7105–7111. DOI: 10.1021/ja00132a010.
  • Qi, P.; Wang, J.; Wang, L.; Li, Y.; Jin, J.; Su, F.; Tian, Y.; Chen, J. Molecularly Imprinted Polymers Synthesized via Semi-Covalent Imprinting with Sacrificial Spacer for Imprinting Phenols. Polymer. 2010, 51, 5417–5423. DOI: 10.1016/j.polymer.2010.09.037.
  • Beltran, A.; Marcé, R. M.; Cormack, P. A. G.; Borrull, F. Synthetic Approaches to Parabens Molecularly Imprinted Polymers and Their Applications to the Solid-Phase Extraction of River Water Samples. Anal. Chim. Acta. 2010, 677, 72–78. DOI: 10.1016/j.aca.2010.07.021.
  • Tang, Y.-W.; Fang, G.-Z.; Wang, S.; Li, J.-L. Covalent Imprinted Polymer for Selective and Rapid Enrichment of Ractopamine by a Non-Covalent Approach. Anal. Bioanal. Chem. 2011, 401, 2275–2282. DOI: 10.1007/s00216-011-5280-0.
  • Latorre, A.; Cela Pérez, M.; Fernández, S. F.; López Vilariño, J.; González Rodríguez, M. Selective Removal of ATP Degradation Products from Food Matrices I: Design and Characterization of a Dummy Molecularly Imprinted Specific Sorbent for Hypoxanthine. React. Funct. Polymers. 2015, 91-92, 51–61. DOI: 10.1016/j.reactfunctpolym.2015.04.004.
  • Thilini Madurangika, G. D.; Domínguez-González, J. R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Ultrasound Assisted Combined Molecularly Imprinted Polymer for the Selective Micro-Solid Phase Extraction and Determination of Aflatoxins in Fish Feed Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2020, 1609, 460431. DOI: 10.1016/j.chroma.2019.460431.
  • Zhang, Z.; Cao, X.; Zhang, Z.; Yin, J.; Wang, D.; Xu, Y.; Zheng, W.; Li, X.; Zhang, Q.; Liu, L. Synthesis of Dummy-Template Molecularly Imprinted Polymer Adsorbents for Solid Phase Extraction of Aminoglycosides Antibiotics from Environmental Water Samples. Talanta. 2020, 208, 120385. DOI: 10.1016/j.talanta.2019.120385.
  • Spivak, D. Optimization, Evaluation, and Characterization of Molecularly Imprinted Polymers. Adv. Drug Deliv. Rev. 2005, 57, 1779–1794. DOI: 10.1016/j.addr.2005.07.012.
  • Zagorodni, A. Ion Exchange Materials: Properties and Applications; Elsevier: Amsterdam, Netherlands, 2007; p. 87.
  • Misra, H. P.; Fridovich, I. The Role of Superoxide Anion in the Autooxidation of Epinephrine and Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972, 247, 3170–3175. DOI: 10.1016/S0021-9258(19)45228-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.