122
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polymethacrylate-based monolithic column with incorporated carbamide-modified fumed silica nanoparticles for hydrophilic liquid interaction chromatography

ORCID Icon & ORCID Icon

References

  • Buszewski, B.; Noga, S. Hydrophilic Interaction Liquid Chromatography (HILIC)-A Powerful Separation Technique. Anal. Bioanal. Chem. 2012, 402, 231–247. DOI: 10.1007/s00216-011-5308-5.
  • Jonnada, M.; Rathnasekara, R.; El Rassi, Z. Recent Advances in Nonpolar and Polar Organic Monoliths for HPLC and CEC. Electrophoresis 2015, 36, 76–100.
  • Rathnasekara, R.; Khadka, S.; Jonnada, M.; El Rassi, Z. Polar and Nonpolar Organic Polymer-Based Monolithic Columns for Capillary Electrochromatography and High-Performance Liquid Chromatography. Electrophoresis 2017, 38, 60–79.
  • Greco, G.; Letzel, T. Main Interactions and Influences of the Chromatographic Parameters in HILIC Separations. J. Chromatogr. Sci. 2013, 51, 684–693. DOI: 10.1093/chromsci/bmt015.
  • Marrubini, G.; Maietta, M.; Appelblad, P.; Papetti, A. Hydrophilic Interaction Chromatography in Food Matrices Analysis: An Updated Review. Food Chem. 2018, 257, 53–66. DOI: 10.1016/j.foodchem.2018.03.008.
  • Alpert, H. Interaction Chromatography for the Separation of Peptides, Nucleic Acids and Other Polar Compounds. J. Chromatogr. A. 1990, 499, 177–196. DOI: 10.1016/S0021-9673(00)96972-3.
  • Gama, M. R.; da Costa Silva, R. G.; Collins, C. H.; Bottoli, C. B. Hydrophilic Interaction Chromatography. TrAC-Trend. Anal. Chem. 2012, 37, 48–60. DOI: 10.1016/j.trac.2012.03.009.
  • Hao, Z.; Xiao, B.; Weng, N. Impact of Column Temperature and Mobile Phase Components on Selectivity of Hydrophilic Interaction Chromatography (HILIC). J. Sep. Sci. 2008, 31, 1449–1464. DOI: 10.1002/jssc.200700624.
  • Karatapanis, A. E.; Fiamegos, Y. C.; Stalikas, C. D. Study of the Behavior of Water-Soluble Vitamins in HILIC on a Diol Column. Chroma. 2010, 71, 751–759. DOI: 10.1365/s10337-010-1564-3.
  • Kırkan, E.; Aydoğan, C. Free Amino Acid Analysis in Honey Samples by Hydrophilic Interaction Liquid Chromatography with UV Detection Using Precolumn Derivatization with Dansyl Chloride. Chromatographia. 2021, 84, 127–133. DOI: 10.1007/s10337-020-03991-z.
  • Qiu, X.; Reynolds, R.; Johanningsmeier, S.; Truong, V.-D. Determination of Free Amino Acids in Five Commercial Sweetpotato Cultivars by Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry. J. Food Compos. Anal. 2020, 92, 103522. DOI: 10.1016/j.jfca.2020.103522.
  • Virgiliou, C.; Theodoridis, G.; Wilson, I. D.; Gika, H. G. Quantification of Endogenous Aminoacids and Aminoacid Derivatives in Urine by Hydrophilic Interaction Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A. 2021, 1642, 462005. DOI: 10.1016/j.chroma.2021.462005.
  • Roca, L. S.; Schoemaker, S. E.; Pirok, B. W. J.; Gargano, A. F. G.; Schoenmakers, P. J. Accurate Modelling of the Retention Behaviour of Peptides in Gradient-Elution Hydrophilic Interaction Liquid Chromatography. J. Chromatogr. A. 2020, 1614, 460650.
  • van Schaick, G.; Pirok, B. W. J.; Haselberg, R.; Somsen, G. W.; Gargano, A. F. G. Computer-Aided Gradient Optimization of Hydrophilic Interaction Liquid Chromatographic Separations of Intact Proteins and Protein Glycoforms. J. Chromatogr. A. 2019, 1598, 67–76.
  • Kilanowska, A.; Buszewski, B.; Studzińska, S. Application of Hydrophilic Interaction Liquid Chromatography Coupled with Tandem Mass Spectrometry for the Retention and Sensitivity Studies of Antisense Oligonucleotides. J. Chromatogr. A. 2020, 1622, 461100
  • Alpert, A. J.; Shukla, M.; Shukla, A. K.; Zieske, L. R.; Yuen, S. W.; Ferguson, M. A.; Mehlert, A.; Pauly, M.; Orlando, R. Hydrophilic-Interaction Chromatography of Complex Carbohydrates. J. Chromatogr. A. 1994, 676, 191–202. DOI: 10.1016/0021-9673(94)00467-6.
  • Churms, S. C. Recent Progress in Carbohydrate Separation by High-Performance Liquid Chromatography Based on Hydrophilic Interaction. J. Chromatogr. A. 1996, 720, 75–91. DOI: 10.1016/0021-9673(95)00306-1.
  • Onorato, J. M.; Langish, R.; Bellamine, A.; Shipkova, P. Applications of HILIC for Targeted and Non-targeted LC/MS Analyses in Drug Discovery. J. Sep. Sci. 2010, 33, 923–929. DOI: 10.1002/jssc.200900659.
  • Olsen, B. A. Hydrophilic Interaction Chromatography Using Amino and Silica Columns for the Determination of Polar Pharmaceuticals and Impurities. J. Chromatogr. A. 2001, 913, 113–122. DOI: 10.1016/S0021-9673(00)01063-3.
  • Ganguli, S.; Maity, T. S.; Ghosh, S. B.; Pahari, N. Hydrophilic Interaction Liquid Chromatography (HILIC) and Its Application in Pharmaceutical Analysis. World J. Pharm. Res. 2015, 4, 1491–1501.
  • Wu, S.; Li, X.; Zhang, F.; Jiang, G.; Liang, X.; Yang, B. An Arginine-Functionalized Stationary Phase for Hydrophilic Interaction Liquid Chromatography. Analyst. 2015, 140, 3921–3924.
  • Kučera, R.; Kovaříková, P.; Klivický, M.; Klimeš, J. The Retention Behaviour of Polar Compounds on Zirconia Based Stationary Phases under Hydrophilic Interaction Liquid Chromatography Conditions. J. Chromatogr. A. 2011, 1218, 6981–6986.
  • Jaoudé, M. A.; Lassalle, Y.; Randon, J. Separation of Xanthines in Hydro-organic and Polar-organic Elution Modes on a Titania Stationary Phase. J. Sep. Sci. 2014, 37, 536–542. DOI: 10.1002/jssc.201301054.
  • Ganewatta, N.; El Rassi, Z. Monolithic Columns with Incorporated Titanium Dioxide Nanoparticles for Hydrophilic Interaction Liquid Chromatography. J. Natn. Sci. Foundation Sri Lanka 2020, 48, 315–325. DOI: 10.4038/jnsfsr.v48i3.9680.
  • Gunasena, D. N.; El Rassi, Z. Neutral, Charged and Stratified Polar Monoliths for Hydrophilic Interaction Capillary Electrochromatography. J. Chromatogr. A. 2013, 1317, 77–84. DOI: 10.1016/j.chroma.2013.07.100.
  • Courtois, J.; Byström, E.; Irgum, K. Novel Monolithic Materials Using Poly (Ethylene Glycol) as Porogen for Protein Separation. Polymer 2006, 47, 2603–2611. DOI: 10.1016/j.polymer.2006.01.096.
  • Holdšvendová, P.; Suchánková, J.; Bunček, M.; Bačkovská, V.; Coufal, P. Hydroxymethyl Methacrylate-Based Monolithic Columns Designed for Separation of Oligonucleotides in Hydrophilic-Interaction Capillary Liquid Chromatography. J. Biochem. Biophys. Methods. 2007, 70, 23–29.
  • Svec, F. Preparation and HPLC Applications of Rigid Macroporous Organic Polymer Monoliths. J. Sep. Sci. 2004, 27, 747–766. DOI: 10.1002/jssc.200401721.
  • Guiochon, G. Monolithic Columns in High-Performance Liquid Chromatography. J. Chromatogr. A. 2007, 1168, 101–168.
  • Lv, Y.; Lin, Z.; Svec, F. “Thiol-ene” Click Chemistry: A Facile and Versatile Route for the Functionalization of Porous Polymer Monoliths. Analyst 2012, 137, 4114–4118.
  • Aydoğan, C.; El Rassi, Z. Monolithic Stationary Phases with Incorporated Fumed Silica Nanoparticles. Part I. Polymethacrylate-Based Monolithic Column with Incorporated Bare Fumed Silica Nanoparticles for Hydrophilic Interaction Liquid Chromatography. J. Chromatogr. A. 2016, 1445, 55–61.
  • Aydoğan, C.; El Rassi, Z. Monolithic Stationary Phases with Incorporated Fumed Silica Nanoparticles. Part II. Polymethacrylate-Based Monolithic Column with "Covalently" Incorporated Modified Octadecyl Fumed Silica Nanoparticles for Reversed-Phase Chromatography. J. Chromatogr. A. 2016, 1445, 62–67.
  • Aydogan, C. Boronic Acid-Fumed Silica Nanoparticles Incorporated Large Surface Area Monoliths for Protein Separation by Nano-Liquid Chromatography. Anal. Bioanal. Chem. 2016, 408, 8457–8466.
  • Ganewatta, N.; El Rassi, Z. Poly(Glyceryl Monomethacrylate-co-Ethylene Glycol Dimethacrylate) Monolithic Columns with Incorporated Bare and Surface Modified Gluconamide Fumed Silica Nanoparticles for Hydrophilic Interaction Capillary Electrochromatography. Talanta 2018, 179, 632–640.
  • Mayadunne, E.; El Rassi, Z. Facile Preparation of Octadecyl Monoliths with Incorporated Carbon Nanotubes and Neutral Monoliths with Coated Carbon Nanotubes Stationary Phases for HPLC of Small and Large Molecules by Hydrophobic and π-π Interactions. Talanta 2014, 129, 565–574.
  • Ganewatta, N.; El Rassi, Z. Organic Polymer Monolithic Columns with Incorporated Bare and Cyano-Modified Fumed Silica Nanoparticles for Use in Hydrophilic Interaction Liquid Chromatography. J. Anal. Sci. Technol. 2020, 11, 39. DOI: 10.1186/s40543-020-00239-1.
  • AEROSIL(R) Fumed Silica – Technical Overview by EVONIK Industries. https://www.silica-specialist.com/product/aerosil/downloads/technical-overview-aerosil-fumed-silica-en.pdf (accessed May 2, 2017).
  • García, N.; Benito, E.; Guzmán, J.; Tiemblo, P. Use of p-Toluenesulfonic Acid for the Controlled Grafting of Alkoxysilanes onto Silanol Containing Surfaces: Preparation of Tunable Hydrophilic, Hydrophobic, and Super-Hydrophobic Silica. J. Am. Chem. Soc. 2007, 129, 5052–5060. DOI: 10.1021/ja067987a.
  • Melander, W.; Horvath, C.; Horvath, C. High Performance Liquid Chromatography–Advances and Perspectives; Academic Press: New York, 1980; Vol. 2, pp 113–319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.