261
Views
1
CrossRef citations to date
0
Altmetric
Articles

Ionic liquid-based dispersive liquid–liquid microextraction followed by dispersive solid phase extraction coupled with HPLC-DAD for the determination of sulfonylurea herbicides in soymilk samples

, , , , , , & show all

References

  • Pei, M.; Zhu, X.; Huang, X. Mixed Functional Monomers-Based Monolithic Adsorbent for the Effective Extraction of Sulfonylurea Herbicides in Water and Soil Samples. J. Chromatogr. A 2018, 1531, 13–21. DOI: 10.1016/j.chroma.2017.11.030.
  • Ghobadi, M.; Yamini, Y.; Ebrahimpour, B. Extraction and Determination of Sulfonylurea Herbicides in Water and Soil Samples by Using Ultrasound-Assisted Surfactant-Enhanced Emulsification Microextraction and Analysis by High-Performance Liquid Chromatography. Ecotoxicol. Environ. Saf. 2015, 112, 68–73. DOI: 10.1016/j.ecoenv.2014.09.035.
  • Ma, J.; Jiang, L.; Wu, G.; Xia, Y.; Lu, W.; Li, J.; Chen, L. Determination of Six Sulfonylurea Herbicides in Environmental Water Samples by Magnetic Solid-Phase Extraction Using Multi-Walled Carbon Nanotubes as Adsorbents Coupled with High-Performance Liquid Chromatography. J. Chromatogr. A 2016, 1466, 12–20. DOI: 10.1016/j.chroma.2016.08.065.
  • Carabias-Martı́nez, R.; Rodrı́guez-Gonzalo, E.; Herrero-Hernández, E.;.; Hernández-Méndez, J. ; Simultaneous Determination of Phenyl- and Sulfonylurea Herbicides in Water by Solid-Phase Extraction and Liquid Chromatography with UV Diode Array or Mass Spectrometric Detection. Anal. Chim. Acta 2004, 517, 71–79. DOI: 10.1016/j.aca.2004.05.007.
  • Gure, A.; Lara, F. J.; Garcia-Campana, A. M.; Megersa, N.; del Olmo-Iruela, M. Vortex-Assisted Ionic Liquid Dispersive Liquid-Liquid Microextraction for the Determination of Sulfonylurea Herbicides in Wine Samples by Capillary High-Performance Liquid Chromatography. Food Chem. 2015, 170, 348–353. DOI: 10.1016/j.foodchem.2014.08.065.
  • Albrecht, L. P.; Albrecht, A. J. P.; Silva, A. F. M.; Krenchinski, F. H.; Placido, H. F.; Victoria Filho, R. Rates of Chlorimuron Applied in Glyphosate-Tolerant and Sulfonylurea-Tolerant Soybean. J. Crop Sci. Biotechnol. 2018, 21, 211–216. DOI: 10.1007/s12892-018-0029-0.
  • Mantovani, E. E.; Souza, N. O. S.; Silva, L. A. S.; dos Santos, M. A. Characterization of Soybean Population with Sulfonylurea Herbicides Tolerant Alleles. Afr. J. Agric. Res. 2017, 12, 1661–1668.
  • Rejczak, T.; Tuzimski, T. Simple, Cost-Effective and Sensitive Liquid Chromatography Diode Array Detector Method for Simultaneous Determination of Eight Sulfonylurea Herbicides in Soya Milk Samples. J. Chromatogr. A 2016, 1473, 56–65. DOI: 10.1016/j.chroma.2016.10.023.
  • Kyprianou, M. Safety of the Food Chain Pesticides and Iocides: Guidance Document on Analytical Quality Control and Validation Procedures for Pesticides Residues Analysis in Food and Feed. SANTE/11945/2015 30 November–1 December, 2015, pp 1–42.
  • Foundation, J. F. C. R. Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. National Printing Bureau: Tokyo, 2015.
  • National Health Commission of the People's Republic of China, M. O. A. A. R. A. O. T. P. S. R. O. C. State Administration for Market Regulation, National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. GB 2763-2019, 2019, pp 1–319.
  • Quesada-Molina, C.; del Olmo-Iruela, M.; Garcia-Campana, A. M. Trace Determination of Sulfonylurea Herbicides in Water and Grape Samples by Capillary Zone Electrophoresis Using Large Volume Sample Stacking. Anal. Bioanal. Chem. 2010, 397, 2593–2601. DOI: 10.1007/s00216-010-3812-7.
  • Daniel, D.; dos Santos, V. B.; Vidal, D. T.; do Lago, C. L. Determination of Halosulfuron-Methyl Herbicide in Sugarcane Juice and Tomato by Capillary Electrophoresis-Tandem Mass Spectrometry. Food Chem. 2015, 175, 82–84. DOI: 10.1016/j.foodchem.2014.11.137.
  • Singh, M.; Srivastava, A.; Sharma, Y. K.; Singh, S.; Singh, S. P. CVD Grown Carbon Nanofibers: An Efficient DSPE Sorbent for Cleanup of Multi-Class Pesticide Residue in High Fat and Low Water Commodities by QuEChERS Using GC-ECD. Microchim. Acta 2020, 187, 1–10. DOI: 10.1007/s00604-020-04464-8.
  • Pang, J.; Song, X.; Huang, X.; Yuan, D. Porous Monolith-Based Magnetism-Reinforced in-Tube Solid Phase Microextraction of Sulfonylurea Herbicides in Water and Soil Samples. J. Chromatogr. A 2020, 1613, 460672. DOI: 10.1016/j.chroma.2019.460672.
  • Wang, D. D.; Zhao, Y.; Yang, M. N. O.; Guo, H. M.; Yang, Z. H. Magnetic Polydopamine Modified with Deep Eutectic Solvent for the Magnetic Solid-Phase Extraction of Sulfonylurea Herbicides in Water Samples. J. Chromatogr. A 2019, 1601, 53–59. DOI: 10.1016/j.chroma.2019.05.011.
  • Wang, D.-D.; Lu, Z.-H.; Guan, X-y.; Yang, M.-N. O.; Guo, H.-M.; Yang, Z.-H. Magnetic Polydopamine Modified with Choline-Based Deep Eutectic Solvent for the Magnetic Solid-Phase Extraction of Sulfonylurea Herbicides in Water Samples. J. Chromatogr. Sci. 2021, 59, 95–102. DOI: 10.1093/chromsci/bmaa077.
  • She, Y. X.; Cao, W. Q.; Shi, X. M.; Lv, X. L.; Liu, J. J.; Wang, R. Y.; Jin, F.; Wang, J.; Xiao, H. Class-Specific Molecularly Imprinted Polymers for the Selective Extraction and Determination of Sulfonylurea Herbicides in Maize Samples by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2047–2053. DOI: 10.1016/j.jchromb.2010.05.038.
  • Liang, T.; Gao, L.; Qin, D.; Chen, L. Determination of Sulfonylurea Herbicides in Grain Samples by Matrix Solid-Phase Dispersion with Mesoporous Structured Molecularly Imprinted Polymer. Food Anal. Methods 2019, 12, 1938–1948. DOI: 10.1007/s12161-019-01539-y.
  • Chen, L.; Wu, J.; Huang, X. Multiple Monolithic Fibers Modified with a Molecularly Imprinted Polymer for Solid Phase Microextraction of Sulfonylurea Herbicides Based on Boron-Nitrogen Interaction. Mikrochim. Acta 2019, 186, 470.
  • Song, N. E.; Seo, D. H.; Choi, J. Y.; Yoo, M.; Koo, M.; Nam, T. G. Dispersive Solid-Liquid Extraction Coupled with LC-MS/MS for the Determination of Sulfonylurea Herbicides in Strawberries. Foods 2019, 8, 273. DOI: 10.3390/foods8070273.
  • Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Lu, D.; Liu, C.; Deng, J.; Zhou, X.; Shi, G.; Zhou, T. Rational Design of an Ionic Liquid Dispersive Liquid-Liquid Micro-Extraction Method for the Detection of Organophosphorus Pesticides. Analyst 2019, 144, 2166–2172. DOI: 10.1039/c9an00123a.
  • Hu, L.; Shan, W.; Zhang, Y.; Li, S.; Gao, H.; Lu, R.; Zhang, S.; Zhou, W. Liquid Phase Microextraction Based on the Solidification of a Floating Ionic Liquid Combined with High-Performance Liquid Chromatography for the Preconcentration of Phthalate Esters in Environmental Waters and in Bottled Beverages. RSC Adv. 2016, 6, 36223–36230. DOI: 10.1039/C6RA00788K.
  • Xu, W.; Li, J.; Feng, J.; Wang, Z.; Zhang, H. In-Syringe Temperature-Controlled Liquid-Liquid Microextraction Based on Solidified Floating Ionic Liquid for the Simultaneous Determination of Triazine and Phenylurea Pesticide in Vegetable Protein Drinks. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1174, 122721. DOI: 10.1016/j.jchromb.2021.122721.
  • Warsi, F.; Islam, M. R.; Alam, M. S.; Ali, M. Exploring the Effect of Hydrophobic Ionic Liquid on Aggregation, Micropolarity and Microviscosity Properties of Aqueous SDS Solutions. J. Mol. Liq. 2020, 310. 113132. DOI: 10.1016/j.molliq.2020.113132
  • Köseoğlu, K.; Ulusoy, H. İ.; Yilmaz, E.; Soylak, M. Simple and Sensitive Determination of Vitamin a and E in the Milk and Egg Yolk Samples by Using Dispersive Solid Phase Extraction with Newly Synthesized Polymeric Material. J. Food Compos. Anal. 2020, 90, 103482. DOI: 10.1016/j.jfca.2020.103482.
  • Gao, G.; Chen, H.; Dai, J.; Jin, L.; Chai, Y.; Zhu, L.; Liu, X.; Lu, C. Determination of Polychlorinated Biphenyls in Tea Using Gas Chromatography-Tandem Mass Spectrometry Combined with Dispersive Solid Phase Extraction. Food Chem. 2020, 316, 126290. DOI: 10.1016/j.foodchem.2020.126290.
  • Sobhi, H. R.; Ghambarian, M.; Behbahani, M.; Esrafili, A. Application of Dispersive Solid Phase Extraction Based on a Surfactant-Coated Titanium-Based Nanomagnetic Sorbent for Preconcentration of Bisphenol a in Water Samples. J. Chromatogr. A 2017, 1518, 25–33. DOI: 10.1016/j.chroma.2017.08.064.
  • Ghiasi, A.; Malekpour, A. Octyl Coated Cobalt-Ferrite/Silica Core-Shell Nanoparticles for Ultrasonic Assisted-Magnetic Solid-Phase Extraction and Speciation of Trace Amount of Chromium in Water Samples. Microchem. J. 2020, 154, 104530. DOI: 10.1016/j.microc.2019.104530.
  • Bouri, M.; Gurau, M.; Salghi, R.; Cretescu, I.; Zougagh, M.; Rios, A. Ionic Liquids Supported on Magnetic Nanoparticles as a Sorbent Preconcentration Material for Sulfonylurea Herbicides Prior to Their Determination by Capillary Liquid Chromatography. Anal. Bioanal. Chem. 2012, 404, 1529–1538. DOI: 10.1007/s00216-012-6221-2.
  • Lal, S.; Perwez, A.; Rizvi, M. A.; Datta, M. Design and Development of a Biocompatible Montmorillonite PLGA Nanocomposites to Evaluate In Vitro Oral Delivery of Insulin. Appl. Clay Sci. 2017, 147, 69–79. DOI: 10.1016/j.clay.2017.06.031.
  • Wu, L.; Yang, C.; Mei, L.; Qin, F.; Liao, L.; Lv, G. Microstructure of Different Chain Length Ionic Liquids Intercalated into Montmorillonite: A Molecular Dynamics Study. Appl. Clay Sci. 2014, 99, 266–274. DOI: 10.1016/j.clay.2014.07.004.
  • Lawal, I. A.; Moodley, B. Fixed-Bed and Batch Adsorption of Pharmaceuticals from Aqueous Solutions on Ionic Liquid-Modified Montmorillonite. Chem. Eng. Technol. 2018, 41, 983–993. DOI: 10.1002/ceat.201700107.
  • Lawal, I. A.; Moodley, B. Synthesis, Characterisation and Application of Imidazolium Based Ionic Liquid Modified Montmorillonite Sorbents for the Removal of Amaranth Dye. RSC Adv. 2015, 5, 61913–61924. DOI: 10.1039/C5RA09483F.
  • Fiscal-Ladino, J. A.; Obando-Ceballos, M.; Rosero-Moreano, M.; Montano, D. F.; Cardona, W.; Giraldo, L. F.; Richter, P. Ionic Liquids Intercalated in Montmorillonite as the Sorptive Phase for the Extraction of Low-Polarity Organic Compounds from Water by Rotating-Disk Sorptive Extraction. Anal. Chim. Acta 2017, 953, 23–31. DOI: 10.1016/j.aca.2016.11.067.
  • Ren, W.; Teng, Y.; Zhou, Q.; Paschke, A.; Schüürmann, G. Sorption of Chlorimuron-Ethyl on Montmorillonite Clays: Effects of Exchangeable Cations, pH, and Ionic Strength. Environ. Sci. Pollut. Res. 2014, 21, 11587–11597. DOI: 10.1007/s11356-014-3139-6.
  • Müller, S.; Totsche, K.; Kögel‐Knabner, I. Sorption of Polycyclic Aromatic Hydrocarbons to Mineral Surfaces. Eur. J. Soil Sci. 2007, 58, 918–931. DOI: 10.1111/j.1365-2389.2007.00930.x.
  • Wu, L.; Wang, Q.; Tang, N.; Gao, L. Preparation of Ionic Liquids/Montmorillonite Composites and Its Application for Diclofenac Sodium Removal. J. Contam. Hydrol. 2019, 220, 1–5. DOI: 10.1016/j.jconhyd.2018.11.006.
  • Montaño, D. F.; Casanova, H.; Cardona, W. I.; Giraldo, L. F. Functionalization of Montmorillonite with Ionic Liquids Based on 1-Alkyl-3-Methylimidazolium: Effect of Anion and Length Chain. Mater. Chem. Phys. 2017, 198, 386–392. DOI: 10.1016/j.matchemphys.2017.06.027.
  • Anggraini, M.; Kurniawan, A.; Ong, L. K.; Martin, M. A.; Liu, J.-C.; Soetaredjo, F. E.; Indraswati, N.; Ismadji, S. Antibiotic Detoxification from Synthetic and Real Effluents Using a Novel MTAB Surfactant-Montmorillonite (Organoclay) Sorbent. RSC Adv. 2014, 4, 16298–16311. DOI: 10.1039/C4RA00328D.
  • Ramesh, P.; Prasad, B. D.; Narayana, K. Influence of Montmorillonite Clay Content on Thermal, Mechanical, Water Absorption and Biodegradability Properties of Treated Kenaf Fiber/PLA-Hybrid Biocomposites. Silicon 2021, 13, 109–118. DOI: 10.1007/s12633-020-00401-9.
  • Ueno, K.; Tokuda, H.; Watanabe, M. Ionicity in Ionic Liquids: Correlation with Ionic Structure and Physicochemical Properties. Phys. Chem. Chem. Phys. 2010, 12, 1649–1658. DOI: 10.1039/b921462n.
  • Tsunashima, K.; Sugiya, M. Physical and Electrochemical Properties of Room Temperature Ionic Liquids Based on Quaternary Phosphonium Cations. Electrochemistry 2007, 75, 734–736. DOI: 10.5796/electrochemistry.75.734.
  • Wei-Li, X.; Ji-Long, L.; Ming-Yang, M.; Lin, W.; Shu-Rong, C.; Zhi-Bing, W.; Han-Qi, Z. Solid Phase Clean-up, Vortex-Assisted and Temperature-Controlled Ionic Liquid-Based Liquid-Liquid Microextraction for Simultaneous Determination of Six Pesticide Residues in Soy Protein Drinks. Chinese J. Anal. Chem. 2020, 48, 1075–1083.
  • Wu, Q.; Wang, C.; Liu, Z.; Wu, C.; Zeng, X.; Wen, J.; Wang, Z. Dispersive Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction for the Determination of Some Sulfonylurea Herbicides in Soil by High-Performance Liquid Chromatography. J. Chromatogr. A 2009, 1216, 5504–5510. DOI: 10.1016/j.chroma.2009.05.062.
  • Chen, L.; Wu, J.; Huang, X. Multiple Monolithic Fibers Modified with a Molecularly Imprinted Polymer for Solid Phase Microextraction of Sulfonylurea Herbicides Based on Boron-Nitrogen Interaction. Microchim. Acta 2019, 186, 1–11. DOI: 10.1007/s00604-019-3610-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.