105
Views
1
CrossRef citations to date
0
Altmetric
Articles

Automated online monitoring of lactate and pyruvate in tamoxifen resistant MCF-7 cells using sequential-injection capillary electrophoresis with contactless conductivity detection (SI-CE-C4D) and correlation with MCT1 and MCT4 genes expression

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. DOI: 10.3322/caac.21590.
  • Rugo, H. S.; Rumble, R. B.; Macrae, E.; Barton, D. L.; Connolly, H. K.; Dickler, M. N.; Fallowfield, L.; Fowble, B.; Ingle, J. N.; Jahanzeb, M.; et al. Endocrine Therapy for Hormone Receptor–Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. JCO. 2016, 34, 3069–3103. DOI: 10.1200/JCO.2016.67.1487.
  • Gradishar, W. J.; Anderson, B. O.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K. H.; Blair, S. L.; Burstein, H. J.; Dang, C.; Elias, A. D.; et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2020, 18, 452–478.
  • Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; Godwin, J. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effect of Radiotherapy after Breast-Conserving Surgery on 10-Year Recurrence and 15-Year Breast Cancer Death: Meta-Analysis of Individual Patient Data for 10,801 Women in 17 Randomised Trials. Lancet. 2011, 378, 1707–1716.
  • Ali, S.; Rasool, M.; Chaoudhry, H.; N Pushparaj, P.; Jha, P.; Hafiz, A.; Mahfooz, M.; Abdus Sami, G.; Azhar Kamal, M.; Bashir, S.; et al. Molecular Mechanisms and Mode of Tamoxifen Resistance in Breast Cancer. Bioinformation. 2016, 12, 135–139.
  • Shi, Y.; Zheng, W.; Ruan, X.; Wei, Y. Simultaneous Detection of CA15-3 and PGRMC1 on a Microfluidic Chip for Early Diagnosis of Breast Cancer. J. Liq. Chromatogr. Relat. Technol. 2021, 44, 519–510. DOI: 10.1080/10826076.2021.1968896.
  • Linden, C. V.; Corbet, C. Killing Two Birds with One Stone: Blocking the Mitochondrial Pyruvate Carrier to Inhibit Lactate Uptake by Cancer Cells and Radiosensitize Tumors. Mol. Cell Oncol. 2018, 5, e1465016. DOI: 10.1080/23723556.2018.1465016.
  • Biagi, S.; Ghimenti, S.; Onor, M.; Bramanti, E. Simultaneous Determination of Lactate and Pyruvate in Human Sweat Using Reversed‐Phase High‐Performance Liquid Chromatography: A Noninvasive Approach. Biomed. Chromatogr. 2012, 26, 1408–1415.
  • Mathupala, S. P.; Parajuli, P.; Sloan, A. E. Silencing of Monocarboxylate Transporters via Small Interfering Ribonucleic Acid Inhibits Glycolysis and Induces Cell Death in Malignant Glioma: An In Vitro Study. Neurosurgery. 2004, 55, 1410–1419. DOI: 10.1227/01.neu.0000143034.62913.59.
  • Hong, C. S.; Graham, N. A.; Gu, W.; Espindola Camacho, C.; Mah, V.; Maresh, E. L.; Alavi, M.; Bagryanova, L.; Krotee, P. A. L.; Gardner, B. K.; et al. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors That Co-Express MCT1 and MCT4. Cell Rep. 2016, 14, 1590–1601. DOI: 10.1016/j.celrep.2016.01.057.
  • Varghese, E.; Samuel, S. M.; Líšková, A.; Samec, M.; Kubatka, P.; Büsselberg, D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers. 2020, 12, 2252. DOI: 10.3390/cancers12082252.
  • Gupta, N.; Renugopalakrishnan, V.; Liepmann, D.; Paulmurugan, R.; Malhotra, B. D. Cell-Based Biosensors: Recent Trends, Challenges and Future Perspectives. Biosens. Bioelectron. 2019, 141, 111435.
  • Huang, Y.; Yu, L.; Lu, P.; Wei, Y.; Wang, X.; Chen, L. Evaluate the Inhibition of Cytochrome P450 1A1 for Enhancing Breast Cancer Chemotherapy with a Turn-on Fluorescent Probe. Sens. Actuators, B. 2021, 344, 130233. DOI: 10.1016/j.snb.2021.130233.
  • Kucherenko, I.; Topolnikova, Y. V.; Soldatkin, O. Advances in the Biosensors for Lactate and Pyruvate Detection for Medical Applications: A Review. Trends Anal. Chem. 2019, 110, 160–172. DOI: 10.1016/j.trac.2018.11.004.
  • Wang, R. C. C.; Campbell, D. A.; Green, J. R.; Čuperlović-Culf, M. Automatic 1D 1H NMR Metabolite Quantification for Bioreactor Monitoring. Metabolites. 2021, 11, 157. DOI: 10.3390/metabo11030157.
  • Edison, A. S.; Colonna, M.; Gouveia, G. J.; Holderman, N. R.; Judge, M. T.; Shen, X.; Zhang, S. NMR: unique Strengths That Enhance Modern Metabolomics Research. Anal. Chem. 2021, 93, 478–499.
  • Liu, W.; Wang, N.; Lin, X.; Ma, Y.; Lin, J.-M. Interfacing Microsampling Droplets and Mass Spectrometry by Paper Spray Ionization for Online Chemical Monitoring of Cell Culture. Anal. Chem. 2014, 86, 7128–7134.
  • Bayer, B.; Maccani, A.; Jahn, J.; Duerkop, M.; Kapeller, E.; Pletzenauer, R.; Kraus, B.; Striedner, G.; Hernandez Bort, J. A. Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for Online Monitoring of Glucose Depletion and Cell Concentrations in HEK 293 Gene Therapy Processes. Biotechnol. Lett. 2021, 44(1), 1–12.
  • Kambayashi, T.; Noguchi, T.; Nojima, A.; Kono, S.; Taniguchi, S-i.; Ozaki, Y. Glucose Monitoring in Cell Culture with Online Ultrasound-Assisted near-Infrared Spectroscopy. Anal Chem 2020, 92, 2946–2952.
  • Bhatia, H.; Mehdizadeh, H.; Drapeau, D.; Yoon, S. In‐Line Monitoring of Amino Acids in Mammalian Cell Cultures Using Raman Spectroscopy and Multivariate Chemometrics Models. Eng. Life Sci. 2018, 18, 55–61. DOI: 10.1002/elsc.201700084.
  • Vats, A.; Chavan, R.; Kumar, D.; Kurade, S. A.; Mutnuri, S. Development of Sensitive and Selective UPLC-MS/MS Method for the Quantification of Vitamin D2 (Ergocalciferol) and Its Demonstration in Agaricus Bisporus. J. Liquid Chromatogr. Relat. Technol. 2021, 44, 579–579. DOI: 10.1080/10826076.2021.1995743.
  • Sun, Z.; Jin, Q.; Yu, Y.; Cheng, J.; Ji, Z.; Li, G.; You, J. A Highly Sensitive and Selective Method for Analysis of Biomarkers of Diisocyanate Exposure in Human Urine by High-Performance Liquid Chromatography with Intramolecular Excimer-Forming Fluorescence Derivatization. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 982–991. DOI: 10.1080/10826076.2018.1549068.
  • Lischynski, J. R.; Goltz, D. M.; Craig, D. B. Measurement of Phosphate in Small Samples Using Capillary Electrophoresis with Laser-Induced Luminescence Detection. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 1092–1097. DOI: 10.1080/10826076.2018.1564326.
  • Marothu, V. K.; K, P.; G, M.; K, L. Cloud Point Extraction as a Sample Enrichment Technique for Capillary Electrophoresis–an Overview. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 693–699. DOI: 10.1080/10826076.2020.1790386.
  • Breadmore, M. C.; Grochocki, W.; Kalsoom, U.; Alves, M. N.; Phung, S. C.; Rokh, M. T.; Cabot, J. M.; Ghiasvand, A.; Li, F.; Shallan, A. I.; et al. Recent Advances in Enhancing the Sensitivity of Electrophoresis and Electrochromatography in Capillaries and Microchips (2016–2018). Electrophoresis. 2019, 40, 17–39. DOI: 10.1002/elps.201800384.
  • Wen, Y.; Li, J.; Ma, J.; Chen, L. Recent Advances in Enrichment Techniques for Trace Analysis in Capillary Electrophoresis. Electrophoresis. 2012, 33, 2933–2952. DOI: 10.1002/elps.201200240.
  • Neaga, I.-O.; Iacob, B. C.; Bodoki, E. The Analysis of Small Ions with Physiological Implications Using Capillary Electrophoresis with Contactless Conductivity Detection. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 2072–2090. DOI: 10.1080/10826076.2013.825862.
  • Nie, H.; Li, Z.; Wang, X.; Gu, R.; Yuan, H.; Guo, Y.; Xiao, D. An Improved Dual-Channel Capacitively Coupled Contactless Conductivity Detector with High Detection Performance. Analyst. 2022, 147, 2106–2114. DOI: 10.1039/d2an00330a.
  • Tůma, P.; Hložek, T.; Kamišová, J.; Gojda, J. Monitoring of Circulating Amino Acids in Patients with Pancreatic Cancer and Cancer Cachexia Using Capillary Electrophoresis and Contactless Conductivity Detection. Electrophoresis. 2021, 42, 1885–1891. DOI: 10.1002/elps.202100174.
  • Tůma, P. Determination of Amino Acids by Capillary and Microchip Electrophoresis with Contactless Conductivity Detection–Theory, Instrumentation and Applications. Talanta 2021, 224, 121922. DOI: 10.1016/j.talanta.2020.121922.
  • Huang, J.; Hou, L.; Bian, X.; Chang, K. Analysis of Intracellular Reactive Oxygen Species by Micellar Electrokinetic Capillary Chromatography with Laser-Induced-Fluorescence Detector. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 429–435. DOI: 10.1080/10826076.2019.1625369.
  • Alhusban, A. A.; Breadmore, M. C.; Guijt, R. M. Capillary Electrophoresis for Monitoring Bioprocesses. Electrophoresis. 2013, 34, 1465–1482. DOI: 10.1002/elps.201200646.
  • Tůma, P. The Control of Glucose and Lactate Levels in Nutrient Medium after Cell Incubation and in Microdialysates of Human Adipose Tissue by Capillary Electrophoresis with Contactless Conductivity Detection. In Clinical Applications of Capillary Electrophoresis; Springer: New York, 2019; pp 95–108.
  • Weisenberger, M. M.; Bowser, M. T. In Vivo Monitoring of Amino Acid Biomarkers from Inguinal Adipose Tissue Using Online Microdialysis-Capillary Electrophoresis. Anal. Chem. 2017, 89, 1009–1014. DOI: 10.1021/acs.analchem.6b04516.
  • Makeeva, D.; Polikarpova, D.; Demyanova, E.; Roshchina, E.; Vakhitov, T.; Kartsova, L. Determination of Native Amino Acids and Lactic Acid in Lactobacillus helveticus Culture Media by Capillary Electrophoresis Using Cu2+ and β-Cyclodextrins as Additives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1156, 122304. DOI: 10.1016/j.jchromb.2020.122304.
  • da Silva, M. R.; Zaborowska, I.; Carillo, S.; Bones, J. A Rapid, Simple and Sensitive Microfluidic Chip Electrophoresis Mass Spectrometry Method for Monitoring Amino Acids in Cell Culture Media. J. Chromatogr. A. 2021, 1651, 462336. DOI: 10.1016/j.chroma.2021.462336.
  • Alhusban, A. A.; Gaudry, A. J.; Breadmore, M. C.; Gueven, N.; Guijt, R. M. On-Line Sequential Injection-Capillary Electrophoresis for near-Real-Time Monitoring of Extracellular Lactate in Cell Culture Flasks. J. Chromatogr. A. 2014, 1323, 157–162. DOI: 10.1016/j.chroma.2013.11.006.
  • Alhusban, A. A.; Breadmore, M. C.; Gueven, N.; Guijt, R. M. Capillary Electrophoresis for Automated on-Line Monitoring of Suspension Cultures: correlating Cell Density, Nutrients and Metabolites in near Real-Time. Anal. Chim. Acta. 2016, 920, 94–101. DOI: 10.1016/j.aca.2016.03.034.
  • Alhusban, A. A.; Breadmore, M. C.; Gueven, N.; Guijt, R. M. Time-Resolved Pharmacological Studies Using Automated, on-Line Monitoring of Five Parallel Suspension Cultures. Sci. Rep. 2017, 7, 1–9.
  • Alhusban, A. A.; Hamadneh, L. A.; Albustanji, S.; Shallan, A. I. Lactate and Pyruvate Levels Correlation with Lactate Dehydrogenase Gene Expression and Glucose Consumption in Tamoxifen‐Resistant MCF‐7 Cells Using Capillary Electrophoresis with Contactless Conductivity Detection (CE‐C4D). Electrophoresis. 2022, 43, 446–455. DOI: 10.1002/elps.202100217.
  • Jarrar, Y.; Zihlif, M.; Al Bawab, A. Q.; Sharab, A. Effects of Intermittent Hypoxia on Expression of Glucose Metabolism Genes in mcf7 Breast Cancer Cell Line. CCDT. 2020, 20, 216–222. DOI: 10.2174/1568009619666191116095847.
  • Hamadneh, L.; Abuarqoub, R.; Alhusban, A.; Bahader, M. Upregulation of PI3K/AKT/PTEN Pathway is Correlated with Glucose and Glutamine Metabolic Dysfunction during Tamoxifen Resistance Development in MCF-7 Cells. Sci. Rep. 2020, 10, 1–7.
  • Hamadneh, L.; Al-Lakkis, L.; Alhusban, A. A.; Tarawneh, S.; Abu-Irmaileh, B.; Albustanji, S.; Al-Bawab, A. Q. Changes in Lactate Production, Lactate Dehydrogenase Genes Expression and DNA Methylation in Response to Tamoxifen Resistance Development in MCF-7 Cell Line. Genes. 2021, 12, 777. DOI: 10.3390/genes12050777.
  • Hamadneh, L.; Bahader, M.; Abuarqoub, R.; AlWahsh, M.; Alhusban, A.; Hikmat, S. PI3K/AKT and MAPK1 Molecular Changes Preceding Matrix Metallopeptidases Overexpression during Tamoxifen-Resistance Development Are Correlated to Poor Prognosis in Breast Cancer Patients. Breast Cancer. 2021, 28, 1358–1366. DOI: 10.1007/s12282-021-01277-2.
  • European Medicines Agency, Guidance on Bioanalytical Method Validation 2011. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed in March 2022)
  • Alhusban, A. A.; Albustanji, S.; Hamadneh, L. A.; Shallan, A. I. High Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Correlating the Metabolic Changes of Lactate, Pyruvate and L-Glutamine with Induced Tamoxifen Resistant MCF-7 Cell Line Potential Molecular Changes. Molecules. 2021, 26, 4824. DOI: 10.3390/molecules26164824.
  • Saulle, E.; Spinello, I.; Quaranta, M. T.; Pasquini, L.; Pelosi, E.; Iorio, E.; Castelli, G.; Chirico, M.; Pisanu, M. E.; Ottone, T. Targeting Lactate Metabolism by Inhibiting MCT1 or MCT4 Impairs Leukemic Cell Proliferation, Induces Two Different Related Death-Pathways and Increases Chemotherapeutic Sensitivity of Acute Myeloid Leukemia Cells. Front. Oncol. 2021, 10, 3394.
  • Baenke, F.; Dubuis, S.; Brault, C.; Weigelt, B.; Dankworth, B.; Griffiths, B.; Jiang, M.; Mackay, A.; Saunders, B.; Spencer-Dene, B.; et al. Functional Screening Identifies MCT4 as a Key Regulator of Breast Cancer Cell Metabolism and Survival. J. Pathol. 2015, 237, 152–165.
  • Nadai, T.; Narumi, K.; Furugen, A.; Saito, Y.; Iseki, K.; Kobayashi, M. Pharmacological Inhibition of MCT4 Reduces 4-Hydroxytamoxifen Sensitivity by Increasing HIF-1α Protein Expression in ER-Positive MCF-7 Breast Cancer Cells. Biol. Pharm. Bull. 2021, 44, 1247–1253.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.