108
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Countercurrent chromatography: separation principle, mechanical design, development trends, and applications

, , , &

References

  • Yao, S.; Cao, Y.; Jia, C. M.; Wang, Y.; Song, H. Developments of Instruments and Methods Related with High-Speed Countercurrent Chromatography and Their Applications in Research of Natural Medicines. Cent. Eur. J. Chem. 2012, 10, 417–432.
  • Sutherland, I. A. Recent Progress on the Industrial Scale-Up of Counter-Current Chromatography. J. Chromatogr. A 2007, 1151, 6–13.
  • Ito, Y.; Conway, W. D. High-Speed Countercurrent Chromatography. Crit. Revs. Anal. Chem. 1986, 17, 65–143. DOI: 10.1080/10408348608085550.
  • Ito, Y. Golden Rules and Pitfalls in Selecting Optimum Conditions for High-Speed Counter-Current Chromatography. J. Chromatogr. A 2005, 1065, 145–168.
  • Ito, Y.; Weinstein, M.; Aoki, I.; Harada, R.; Kimura, E.; Nunogaki, K. The Coil Planet Centrifuge. Nature 1966, 212, 985–987.
  • Ito, Y.; Ma, Z. Y.; Robert, C.; Powell, J.; Knight, M.; Thomas, M. F. Vortex Counter-Current Chromatography. J. Chromatogr. A 2011, 1218, 6165–6172. DOI: 10.1016/j.chroma.2010.10.058.
  • Ito, Y. Spiral Column Configuration for Protein Separation by High-Speed Countercurrent Chromatography. Chem. Eng. Process. 2010, 49, 82–792.
  • Shinomiya, K.; Sato, K.; Yoshida, K.; Koji, T.; Hiroshi, M.; Kazuhiro, Y.; Ito, Y. Partition Efficiencies of Newly Fabricated Universal High-Speed Counter-Current Chromatograph for Separation of Two Different Types of Sugar Derivatives with Organic–Aqueous Two-Phase Solvent Systems. J. Chromatogr. A 2013, 1322, 74–80.
  • Zhao, C. X. 2007 Basic Research and Application of Multilayer Spiral Tube Planetary Centrifugal Process. Zhejiang: Zhejiang University.
  • Zhao, Y. J.; Zou, D. J.; Liu, Y.; Yuan, H. H. Cross-Axis Countercurrent Chromatograph. CN Patent ZL20131016256.1, 2015.
  • Zhao, Y. J.; Liu, Y.; Zou, D. J. A Cross-Axis Countercurrent Chromatograph. CN Patent ZL201510255241.5, 2016.
  • Ito, Y.; Kitazume, E.; Bhatnagar, M.; Trimble, F. D. Cross-Axis Synchronous Flow-Through Coil Planet Centrifuge (Type XLL): I. Design of the Apparatus and Studies on Retention of Stationary Phase. J. Chromatogr. A 1991, 538, 59–66. DOI: 10.1016/S0021-9673(01)91621-8.
  • Shinomiya, K.; Yanagidaira, K.; Ito, Y. New Small-Scale Cross-Axis Coil Planet Centrifuge: The Design of the Apparatus and Its Application to Counter-Current Chromatographic Separation of Proteins with Aqueous–Aqueous Polymer Phase Systems. J. Chromatogr. A 2006, 1104, 245–255. DOI: 10.1016/j.chroma.2005.12.046.
  • Zhang, T. Y.; Lee, Y. W.; Fang, Q. C.; Xiao, R.; Ito, Y. Preliminary Applications of Cross-Axis Synchronous Flow-Through Coil Planet Centrifuge for Large-Scale Preparative Counter-Current Chromatography. J. Chromatogr. A 1988, 454, 185–193. DOI: 10.1016/S0021-9673(00)88612-4.
  • Zou, D. J.; Zhao, Y. J.; Liu, Y.; Zhang, X. P. Design and Development of a Cross-Axis Chromatograph. Chin. J. Sci. Instr. 2017, 38, 343–2350.
  • Zou, D. J. Dynamics Design and Prototype Construct of the Cross-Axis Chromatograph. M.S. Thesis, Shantou University, 2014.
  • Ito, Y. Cross-Axis Synchronous Flow-Through Coil Planet Centrifuge Free of Rotary Seals for Preparative Countercurrent Chromatography. Part I. Apparatus and Analysis of Acceleration. Sep. Sci. Technol. 1987, 22, 1971–1987. DOI: 10.1080/01496398708057623.
  • Ito, Y. Cross-Axis Synchronous Flow-Through Coil Planet Centrifuge Free of Rotary Seals for Preparative Countercurrent Chromatography. Part II. Studies on Phase Distribution and Partition Efficiency in Coaxial Coils. Sep. Sci. Technol. 1987, 22, 1989–2009. DOI: 10.1080/01496398708057624.
  • Zhang, T. Y. A Study on Cross-Axis Horizontal Flow Countercurrent Chromatograph. Chin. J. Instr. 1990, 11, 16–23.
  • Miao, L.; Guan, X. M.; Guan, X. H. An Orthogonal Axial Countercurrent Chromatograph for Switching Separation Columns. Chinese Patent CN201867397U, 2011
  • Zhao, Y. J.; Zhang, X. P.; Liu, Y. Adjustable Angle Countercurrent Chromatograph. China Patent 106370761 B, 2017.
  • Ito, Y. Angle Rotor Countercurrent Chromatography. US Patent 19750598124, 1976.
  • Ito, Y. Angle Rotor Coil Planet Centrifuge for Countercurrent Chromatography and Particle Separation. US Patent 19870052209, 1988.
  • Zhao, Y. J.; Zhang, X. P.; Luo, T. X. D.; Zou, J.; Yuan, H. H.; Liu, Z. C.; Liu, Y. Development of a Novel Cross-Axis Countercurrent Chromatographic Instrument with Six Separation Columns: design, Dynamics, Optimization, Prototyping, and Experiment. Rev. Sci. Instrum. 2019, 90, 114102–114114. DOI: 10.1063/1.5100641.
  • Ito, Y. Foam Countercurrent Chromatography Based on Dual Counter-Current System. J. Liq. Chromatogr. 1985, 12, 2131–2152.
  • Ma, Y.; Ito, Y. Recent Advances in Peptide Separation by Countercurrent Chromatography. J. Chromatogr. A 1997, 352, 411–427.
  • Ma, Y.; Ito, Y. Recent Advances in Peptide Separation by Countercurrent Chromatography. Anal. Chim. Acta 1997, 352, 411–427. DOI: 10.1016/S0003-2670(97)00223-7.
  • Sutherland, I.; Ignatova, S.; Hewitson, P.; Janaway, L.; Wood, P.; Edwards, N.; Harris, G.; Guzlek, H.; Keay, D.; Freebairn, K.; et al. Scalable Technology for the Extraction of Pharmaceutics (STEP): The Transition from Academic Knowhow to Industrial Reality. J. Chromatogr. A 2011, 1218, 6114–6121. DOI: 10.1016/j.chroma.2011.01.016.
  • Lange, V.; Brown, L.; Angeli, P. Hydrodynamics Studies of the Behaviour of Traditional and Two-Phase Ionic Liquid Solvent Systems in Countercurrent Chromatography (CCC). J. Chromatogr. A 2018, 192, 551–564.
  • Terada, H.; Kosuge, Y.; Nakaya, N.; Murayama, W.; Nunogaki, Y.; Nunogaki, K. I. Centrifugal Partition Chromatography (CPC) as a Useful Method for Determination of Partition Coefficients Between Octanol and Water. Chem. Pharm. Bull 1987, 35, 5010–5014. DOI: 10.1248/cpb.35.5010.
  • Zhang, T. Y.; Wang, X. 2011 High Speed Countercurrent Chromatography; Beijing: Chemical Industry Press.
  • Cao, X.; Wang, C.; Pei, H.; Sun, B. Separation and Identification of Polyphenols in Apple Pomace by High-Speed Counter-Current Chromatography and High-Performance Liquid Chromatography Coupled With Mass Spectrometry. J. Chromatogr. A 2009, 1216, 4268–4274.
  • Du, Q.; Fang, J.; Gao, S.; Zeng, Q.; Mo, C. A Gram-Scale Separation of Glucosinolates from an Oil-Pressed Residue of Rapeseeds Using Slow Rotary Countercurrent Chromatography. J. Chromatogr. A 2008, 59, 294–298.
  • Zhang, L.; Wu, S. Hydrophobic and Hydrophilic Interactions in Countercurrent Chromatography. J. Chromatogr. A 2019, 16, 1–16.
  • Chen, W.; Ma, L.; Wang, Q. A High Speed Countercurrent Chromatograph Separation Device. China Patent CN101806786A, 2016.
  • Zheng, Z. J. A Centrifugal High-Speed Countercurrent Chromatograph. Chinese Patent CN204798900U, 2015.
  • Ding, J.; Li, S.; Zhao, Y.; Guan, Y.; Deng, H. L.; Deng, Q. Properties of Hydrodynamic J-Type Countercurrent Chromatography for Protein Separation Using Aqueous Two-Phase Systems: With Special Reference to Constructing Conical Columns. J. Chromatogr. A 2017, 1499, 101–110.
  • Guzlek, H.; Wood, P. L.; Janaway, L. Performance Comparison Using the GUESS Mixture to Evaluate Counter-Current Chromatography Instruments. J. Chromatogr. A 2009, 1216, 4181–4186. DOI: 10.1016/j.chroma.2009.02.091.
  • Chen, L.; Sutherland, I. A. How to Achieve Rapid Separations in Counter-Current Chromatography. J. Chromatogr. A 2006, 1114, 29–33. DOI: 10.1016/j.chroma.2006.02.019.
  • Yuan, Y.; Wang, B.; Chen, L.; Luo, H.; Fisher, D.; Sutherland, I. A.; Wei, Y. How to Realize the Linear Scale-up Process for Rapid Purification Using High-Performance Counter-Current Chromatography. J. Chromatogr. A 2008, 1194, 192–198. DOI: 10.1016/j.chroma.2008.04.049.
  • Sutherland, I.; Hewitson, P.; Ignatova, S. New 18-l Process-Scale Counter-Current Chromatography Centrifuge. J. Chromatogr. A 2009, 1216, 4201–4205. DOI: 10.1016/j.chroma.2008.11.097.
  • Chen, L.; Zhang, Q.; Yang, G.; Fan, L.; Tang, J.; Garrard, I.; Ignatova, S.; Fisher, D.; Sutherland, I. A. Rapid Purification and Scale-up of Honokiol and Magnolol Using High-Capacity High-Speed Counter-Current Chromatography. J. Chromatogr. A 2007, 1142, 115–122. DOI: 10.1016/j.chroma.2006.09.098.
  • Sutherland, I.; Hewitson, P.; Ignatova, S. Scale-up of Counter-Current Chromatography: Demonstration of Predictable Isocratic and Quasi-Continuous Operating Modes from the Test Tube to Pilot/Process Scale. J. Chromatogr. A 2009, 1216, 8787–8792. DOI: 10.1016/j.chroma.2009.03.040.
  • Ito, Y. Countercurrent Chromatography. J. Biochem. Biophys. Methods 1981, 5, 105–129. DOI: 10.1016/0165-022x(81)90011-7.
  • animura, T.; Pisano, J.; Ito, Y.; Bowman, R. L. Droplet Countercurrent Chromatography. Science 1970, 169, 54–56.
  • Cao, X.; Hu, G.; Huo, L.; Zhu, X.; Li, T.; Powell, J.; Ito, Y. Stationary Phase Retention and Preliminary Application of a Spiral Disk Assembly Designed for High-Speed Counter-Current Chromatography. J. Chromatogr. A 2008, 1188, 164–170. DOI: 10.1016/j.chroma.2008.02.073.
  • Ito, Y.; Clary, R.; Sharpnak, F.; Metger, H.; Powell, J. Mixer-Settler Counter-Current Chromatography with Multiple Spiral Disk Assembly. J. Chromatogr. A 2007, 1172, 151–159.
  • Ito, Y.; Yang, F.; Fitze, P. E.; Sullivan, J. V. Spiral Disk Assembly for HSCCC: Column Design and Basic Studies on Chromatographic Resolution and Stationary Phase Retention. J. Liquid Chromatogr. Relat. Technol. 2003, 26, 1355–1372. DOI: 10.1081/JLC-120021255.
  • Prajapati, H. A.; Chandarana, C. V.; Desai, C.; Narkhede, S. B. A Brief Review on Spiral Counter Current Chromatography (SCCC). Pharma Scien. Monit. 2018, 9, 38–50.
  • Hu, G. H.; Cao, X. L. High Speed Countercurrent Chromatography with Spiral Fluted Disk Column and Its Application in the Separation of Peptides and Proteins. J. Bioeng. 2009, 25, 618–625.
  • Chen, J. F.; Chen, H. J.; Yan, G. F. Design and Optimization of Separation Column Structure by High-Capacity High-Speed Countercurrent Chromatograph. China Test 2019, 45, 98–104.
  • Ito, Y.; Conway, W. D. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography : III. Effects of physical properties of the solvent systems and operating temperature on the distribution of two-phase solvent systems. J. Chromatogr. A 1984, 301, 405–414.
  • Wang, H. F. Key Technologies and Future Applications of hrust Vectoring on Fighter Aircraft. Acta Aeronautica et Astronautica Sinica 2020, 41, 524057. DOI: 10.7527/S1000-6893.2020.24057.
  • Li, H. B.; Chen, F. Preparative Separation and Purification of Astaxanthin from the Microalga Chlorococcum sp. by High-Speed Counter-Current Chromatography. J. Chromatogr. A 2001, 925, 133–137.
  • Pettit, G. R.; Gao, F.; Sengupta, D. J.; Coll, C.; Nieman, R. A. Antineoplastic Agents Part 225 Separation and Structure of Bryostatins 14 and 15. Cheminform 1991, 22, 266–266.
  • Li, H. B.; Chen, F.; Zhang, T.; Yang, F.; Xu, G. Preparative Separation and Purification of Lutein from the Microalga Chlorella Vulgaris by High-Speed Counter-Current Chromatography. J. Chromatogr. A 2001, 905, 151–155.
  • Zhang, Y.; Shi, S.; Wang, Y.; Huang, K. Target-Guided Separation and Purification of Antioxidants from Selaginella Sinensis by Offline Coupling of DPPH-HPLC and HSCCC Experiments. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 191–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.