241
Views
0
CrossRef citations to date
0
Altmetric
Reviews

An overview of liquid chromatographic methods for analyzing new generation anti-epileptic drugs

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Falco-Walter, J. J.; Scheffer, I. E.; Fisher, R. S. The New Definition and Classification of Seizures and Epilepsy. Epilepsy Res. 2018, 139, 73–79. DOI: 10.1016/j.eplepsyres.2017.11.015.
  • Thijs, R. D.; Surges, R.; O’Brien, T. J.; Sander, J. W. Epilepsy in Adults. Lancet 2019, 393, 689–701. DOI: 10.1016/S0140-6736(18)32596-0.
  • Lattanzi, S.; Trinka, E.; Zaccara, G.; Striano, P.; Russo, E.; Del Giovane, C.; Silvestrini, M.; Brigo, F. Third-Generation Antiseizure Medications for Adjunctive Treatment of Focal-Onset Seizures in Adults: A Systematic Review and Network Meta-Analysis. Drugs 2022, 82, 199–218. DOI: 10.1007/s40265-021-01661-4.
  • Devinsky, O.; Vezzani, A.; O’Brien, T. J.; Jette, N.; Scheffer, I. E.; De Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Prim 2018, 4, 18024. DOI: 10.1038/nrdp.2018.24.
  • Perucca, E. Antiepileptic Drugs: Evolution of Our Knowledge and Changes in Drug Trials. Epileptic Disord. 2019, 21, 319–329. DOI: 10.1684/epd.2019.1083.
  • Patsalos, P. N.; Spencer, E. P.; Berry, D. J. Therapeutic Drug Monitoring of Antiepileptic Drugs in Epilepsy: A 2018 Update. Ther. Drug Monit. 2018, 40, 526–548. DOI: 10.1097/FTD.0000000000000546.
  • Wesche, D.; MillerSunny, R.; Nancy, C.; Burger, J. A Comparison of the Pharmacokinetics and Pharmacodynamics of Pregabalin and Gabapentin. Clin. Pharm. 2012, 49, 661–669.
  • Cross, A. L.; Viswanath, O.; Sherman, A. L. 2022. Pregabalin. In StatPearls. Treasure Island (FL): StatPearls Publishing.
  • https://Pubchem.Ncbi.Nlm.Nih.Gov/Compound/219078.
  • Carona, A.; Bicker, J.; Silva, R.; Fonseca, C.; Falcão, A.; Fortuna, A. Pharmacology of Lacosamide: From Its Molecular Mechanisms and Pharmacokinetics to Future Therapeutic Applications. Life Sci. 2021, 275, 119342. DOI: 10.1016/j.lfs.2021.119342.
  • Patsalos, P. N.; Zugman, M.; Lake, C.; James, A.; Ratnaraj, N.; Sander, J. W. Serum Protein Binding of 25 Antiepileptic Drugs in a Routine Clinical Setting: A Comparison of Free Non–Protein-Bound Concentrations. Epilepsia 2017, 58, 1234–1243. DOI: 10.1111/epi.13802.
  • https://Go.Drugbank.Com/Drugs/DB06201 (accessed March, 2022).
  • Patsalos, P. N. The Clinical Pharmacology Profile of the New Antiepileptic Drug Perampanel: A Novel Noncompetitive AMPA Receptor Antagonist. Epilepsia 2015, 56, 12–27. DOI: 10.1111/epi.12865.
  • Bialer, M.; Soares-Da-Silva, P. Pharmacokinetics and Drug Interactions of Eslicarbazepine Acetate. Epilepsia 2012, 53, 935–946. DOI: 10.1111/j.1528-1167.2012.03519.x.
  • https://Pubchem.Ncbi.Nlm.Nih.Gov/Compound/179344 (acessed March, 2022).
  • Klein, P.; Diaz, A.; Gasalla, T.; Whitesides, J. A Review of the Pharmacology and Clinical Efficacy of Brivaracetam. Clin. Pharmacol. 2018, 10, 1–22. DOI: 10.2147/CPAA.S114072.
  • Larsen, C.; Shahinas, J. Dosage, Efficacy and Safety of Cannabidiol Administration in Adults: A Systematic Review of Human Trials. J. Clin. Med. Res. 2020, 12, 129–141. DOI: 10.14740/jocmr4090.
  • Arzimanoglou, A.; Brandl, U.; Cross, J. H.; Gil-Nagel, A.; Lagae, L.; Landmark, C. J.; Specchio, N.; Nabbout, R.; Thiele, E. A.; Gubbay, O. Epilepsy and Cannabidiol: A Guide to Treatment. Epileptic Disord. 2020, 22, 1–14. DOI: 10.1684/epd.2020.1141.
  • Huestis, M. A. Human Cannabinoid Pharmacokinetics. Chem. Biodivers. 2007, 4, 1770–1804. DOI: 10.1002/cbdv.200790152.
  • Reddy, D. S. The Utility of Cannabidiol in the Treatment of Refractory Epilepsy. Clin. Pharmacol. Ther. 2017, 101, 182–184. DOI: 10.1002/cpt.441.
  • Trojnar, M. K.; Wojtal, K.; Trojnar, M. P.; Czuczwar, S. J. Stiripentol. A Novel Antiepileptic Drug. Pharmacol. Rep. 2005, 57, 154–160.
  • https://pubchem.ncbi.nlm.nih.gov/compound/6442177 (accessed March, 2022).
  • Keam, S. J. Cenobamate: First Approval. Drugs 2020, 80, 73–78. DOI: 10.1007/s40265-019-01250-6.
  • Vernillet, L.; Greene, S. A.; Kamin, M. Pharmacokinetics of Cenobamate: Results from Single and Multiple Oral Ascending-Dose Studies in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2020, 9, 428–443. DOI: 10.1002/cpdd.769.
  • https://Go.Drugbank.Com/Drugs/DB00574 (accessed March, 2022).
  • Moshé, S. L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New Advances. Lancet 2015, 385, 884–898. DOI: 10.1016/S0140-6736(14)60456-6.
  • Brodie, M. J. Antiepileptic Drug Therapy the Story So Far. Seizure 2010, 19, 650–655. DOI: 10.1016/j.seizure.2010.10.027.
  • Löscher, W.; Schmidt, D. Modern Antiepileptic Drug Development Has Failed to Deliver: Ways out of the Current Dilemma. Epilepsia 2011, 52, 657–678. DOI: 10.1111/j.1528-1167.2011.03024.x.
  • Carcak, N.; Ozkara, C. Seizures and Antiepileptic Drugs: From Pathophysiology to Clinical Practice. Curr. Pharm. Des. 2017, 23, 6376–6388. DOI: 10.2174/1381612823666171115101557.
  • Ben-Menachem, E. Pregabalin Pharmacology and Its Relevance to Clinical Practice. Epilepsia 2004, 45, 13–18. DOI: 10.1111/j.0013-9580.2004.455003.x.
  • Onakpoya, I. J.; Thomas, E. T.; Lee, J. J.; Goldacre, B.; Heneghan, C. J. Benefits and Harms of Pregabalin in the Management of Neuropathic Pain: A Rapid Review and Meta-Analysis of Randomised Clinical Trials. BMJ Open 2019, 9, e023600. DOI: 10.1136/bmjopen-2018-023600.
  • Arzimanoglou, A.; D’Cruz, O.; Nordli, D.; Shinnar, S.; Holmes, G. L. A Review of the New Antiepileptic Drugs for Focal-Onset Seizures in Pediatrics: Role of Extrapolation. Paediatr Drugs 2018, 20, 249–264. DOI: 10.1007/s40272-018-0286-0.
  • Curia, G.; Biagini, G.; Perucca, E.; Avoli, M. Lacosamide: A New Approach to Target Voltage-Gated Sodium Currents in Epileptic Disorders. CNS Drugs 2009, 23, 555–568. DOI: 10.2165/00023210-200923070-00002.
  • Licko, T.; Seeger, N.; Zellinger, C.; Russmann, V.; Matagne, A.; Potschka, H. Lacosamide Treatment following Status Epilepticus Attenuates Neuronal Cell Loss and Alterations in Hippocampal Neurogenesis in a Rat Electrical Status Epilepticus Model. Epilepsia 2013, 54, 1176–1185. DOI: 10.1111/epi.12196.
  • Wang, B.; Dawson, H.; Wang, H.; Kernagis, D.; Kolls, B. J.; Yao, L.; Laskowitz, D. T. Lacosamide Improves Outcome in a Murine Model of Traumatic Brain Injury. Neurocrit. Care 2013, 19, 125–134. DOI: 10.1007/s12028-012-9808-8.
  • Kim, G. H.; Byeon, J. H.; Eun, B. L. Neuroprotective Effect of Lacosamide on Hypoxic-Ischemic Brain Injury in Neonatal Rats. J. Clin. Neurol. 2017, 13, 138–143. DOI: 10.3988/jcn.2017.13.2.138.
  • Rosati, A.; De Masi, S.; Guerrini, R. Antiepileptic Drug Treatment in Children with Epilepsy. CNS Drugs 2015, 29, 847–863. DOI: 10.1007/s40263-015-0281-8.
  • Rogawski, M. A.; Hanada, T. Preclinical Pharmacology of Perampanel, a Selective Non-Competitive AMPA Receptor Antagonist. Acta Neurol. Scand. 2013, 127, 19–24. DOI: 10.1111/ane.12100.
  • Steinhoff, B. J.; Klein, P.; Klitgaard, H.; Laloyaux, C.; Moseley, B. D.; Ricchetti-Masterson, K.; Rosenow, F.; Sirven, J. I.; Smith, B.; Stern, J. M.; et al. Behavioral adverse events with brivaracetam, levetiracetam, perampanel, and topiramate: A systematic review: A Systematic Review. Epilepsy Behav. 2021, 118, 107939. DOI: 10.1016/j.yebeh.2021.107939.
  • Galiana, G. L.; Gauthier, A. C.; Mattson, R. H. Eslicarbazepine Acetate: A New Improvement on a Classic Drug Family for the Treatment of Partial-Onset Seizures. Drugs R D 2017, 17, 329–339. DOI: 10.1007/s40268-017-0197-5.
  • Elger, C.; Halász, P.; Maia, J.; Almeida, L.; Soares-da-Silva, P. Efficacy and Safety of Eslicarbazepine Acetate as Adjunctive Treatment in Adults with Refractory Partial-Onset Seizures: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Phase III Study. Epilepsia 2009, 50, 454–463. DOI: 10.1111/j.1528-1167.2008.01946.x.
  • Łuszczki, J. J. Third-Generation Antiepileptic Drugs: Mechanisms of Action, Pharmacokinetics and Interactions. Pharmacol. Rep. 2009, 61, 197–216. DOI: 10.1016/S1734-1140(09)70024-6.
  • Perucca, E. Cannabinoids in the Treatment of Epilepsy: Hard Evidence at Last? J. Epilepsy Res. 2017, 7, 61–76. DOI: 10.14581/jer.17012.
  • Abou-khalil, B. B. W. Update on Antiepileptic Drugs 2019. Contin. Lifelong Learn. Neurol. 2019, 25, 508–536.
  • Devinsky, O.; Cross, J. H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I. E.; Thiele, E. A.; Wright, S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. DOI: 10.1056/NEJMoa1611618.
  • Devinsky, O.; Patel, A. D.; Cross, J. H.; Villanueva, V.; Wirrell, E. C.; Privitera, M.; Greenwood, S. M.; Roberts, C.; Checketts, D.; VanLandingham, K. E.; Zuberi, S. M. Effect of Cannabidiol on Drop Seizures in the Lennox–Gastaut Syndrome. N. Engl. J. Med. 2018, 378, 1888–1897. DOI: 10.1056/NEJMoa1714631.
  • Plosker, G. L. Stiripentol: In Severe Myoclonic Epilepsy of Infancy (Dravet Syndrome). CNS Drugs 2012, 26, 993–1001. DOI: 10.1007/s40263-012-0004-3.
  • Bialer, M.; Johannessen, S. I.; Levy, R. H.; Perucca, E.; Tomson, T.; White, H. S. Progress Report on New Antiepileptic Drugs: A Summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 2017, 58, 181–221. DOI: 10.1111/epi.13634.
  • Latimer, D. R.; Edinoff, A. N.; Ruff, R. D.; Rooney, K. C.; Penny, K. M.; Patel, S. B.; Sabbenahalli, S.; Kaye, A. M.; Cornett, E. M.; Viswanath, O.; et al. Cenobamate, a Sodium Channel Inhibitor and Positive Allosteric Modulator of Gabaa Ion Channels, for Partial Onset Seizures in Adults: A Comprehensive Review and Clinical Implications. Neurol. Int. 2021, 13, 252–265. DOI: 10.3390/neurolint13020026.
  • Wiciński, M.; Puk, O.; Malinowski, B. Cenobamate: Neuroprotective Potential of a New Antiepileptic Drug. Neurochem. Res. 2021, 46, 439–446. DOI: 10.1007/s11064-020-03188-8.
  • Zaccara, G.; Lattanzi, S.; Leo, A.; Russo, E. Critical Appraisal of Cenobamate as Adjunctive Treatment of Focal Seizures in Adults. Neuropsychiatr. Dis. Treat. 2021, 17, 3447–3457. DOI: 10.2147/NDT.S281490.
  • Schoonjans, A.; Paelinck, B. P.; Marchau, F.; Gunning, B.; Gammaitoni, A.; Galer, B. S.; Lagae, L.; Ceulemans, B. Low-Dose Fenfluramine Significantly Reduces Seizure Frequency in Dravet Syndrome: A Prospective Study of a New Cohort of Patients. Eur. J. Neurol. 2017, 24, 309–314. DOI: 10.1111/ene.13195.
  • Lagae, L.; Schoonjans, A. S.; Gammaitoni, A. R.; Galer, B. S.; Ceulemans, B. A Pilot, Open-Label Study of the Effectiveness and Tolerability of Low-Dose ZX008 (Fenfluramine HCl) in Lennox-Gastaut Syndrome. Epilepsia 2018, 59, 1881–1888. DOI: 10.1111/epi.14540.
  • Kellogg, M. D. Measurement of Biological Material. In Clinical and Translational Science, 2nd ed.; Academic Press. Boston, MA, United States. 2017. DOI:10.1016/B978-0-12-802101-9.00008-9.
  • Dong, M. W. The Essence of Modern HPLC: Advantages, Limitations, Fundamentals, and Opportunities. LCGC North Am. 2013, 31, 472–479.
  • Sharath, C. S.; Priyanka, G.; Dhanalakshmi, K.; Reddy, N. Switch from HPLC to UPLC: A Novel Achievement in Liquid Chromatography Technique-A Review. Int. J. Pharm. Sci. Rev. Res. 2013, 21, 237–246.
  • Sonia, K.; Shree, B. B.; Lakshmi, K. S. HPTLC Method Development and Validation: An Overview. J. Pharm. Sci. Res. 2017, 9, 652–657.
  • Kashid, S. K.; Tapkir, A.; Choudhari, P. Analytical Method Development and Validation for Stability Indicating Hptlc Method for Assay of Stiripentol in Bulk and Dosage Form. J. App. Pharm. Sci. Res. 2021, 3, 26–30. DOI: 10.31069/japsr.v3i4.5.
  • Ivanova, S.; Todorova, V.; Dyankov, S.; Ivanov, K. High-Performance Thin-Layer Chromatography (HPTLC) Method for Identification of Meloxicam and Piroxicam. Processes 2022, 10, 394. DOI: 10.3390/pr10020394.
  • Rushikesh, S.; Aniket, L.; A, S. Hyphenated Techniques, an Important Tool for Force Degradation Study. Acta Sci. Pharm. Sci. 2020, 4, 23–28.
  • Beccaria, M.; Cabooter, D. Current Developments in LC-MS for Pharmaceutical Analysis. Analyst 2020, 145, 1129–1157. DOI: 10.1039/c9an02145k.
  • Charde, M.; Shinde, M.; Welankiwar, A.; Jitendra, K. Development of Analytical and Stability Testing Method for Vitamin a Palmitate Formulation. Int. J. Pharm. Chem. 2015, 5, 104–114. DOI: 10.7439/ijpc.
  • ALSaeedy, M.; Al-Adhreai, A.; Öncü-Kaya, E. M.; Şener, E. An Overview of Advances in the Chromatography of Drugs Impurity Profiling. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2032587.
  • Dongre, V. G.; Ghugare, P. D.; Karmuse, P.; Singh, D.; Jadhav, A.; Kumar, A. Identification and Characterization of Process Related Impurities in Chloroquine and Hydroxychloroquine by LC/IT/MS, LC/TOF/MS and NMR. J. Pharm. Biomed. Anal. 2009, 49, 873–879. DOI: 10.1016/j.jpba.2009.01.013.
  • Corcoran, O.; Spraul, M. LC-NMR-MS in Drug Discovery. Drug Discov. Today 2003, 8, 624–631. DOI: 10.1016/S1359-6446(03)02749-1.
  • Leibfritz, D.; Willmann, J.; Thiele, H. Combined Reversed Phase HPLC, Mass Spectrometry, and NMR Spectroscopy for a Fast Separation and Efficient Identification of Phosphatidylcholines. J. Biomed. Biotechnol. 2011, 2011, 1–8. DOI: 10.1155/2011/385786.
  • Alves, G.; Figueiredo, I.; Castel-Branco, M.; Loureiro, A.; Falcão, A.; Caramona, M. Simultaneous and Enantioselective Liquid Chromatographic Determination of Eslicarbazepine Acetate, S-Licarbazepine, R-Licarbazepine and Oxcarbazepine in Mouse Tissue Samples Using Ultraviolet Detection. Anal. Chim. Acta. 2007, 596, 132–140. DOI: 10.1016/j.aca.2007.05.056.
  • Thomas, S.; Paul, S. K.; Joshi, S. C.; Kumar, V.; Agarwal, A.; Vir, D. Identification, Synthesis and Characterization of an Unknown Process Related Impurity in Eslicarbazepine Acetate Active Pharmaceutical Ingredient by LC/ESI-IT/MS, 1H, 13C and 1H-1H COSY NMR. J. Pharm. Anal. 2014, 4, 339–344. DOI: 10.1016/j.jpha.2013.08.004.
  • Husain, A.; Iram, F.; Siddiqui, A. A.; Almutairi, S. M.; Mohammed, O. B.; Khan, S. A.; Azmi, S. N. H.; Rahman, N. Identification of Metabolic Pathways Involved in the Biotransformation of Eslicarbazepine Acetate Using UPLC-MS/MS, Human Microsomal Enzymes and in Silico Studies. J. King Saud. Univ. – Sci. 2021, 33, 101281. DOI: 10.1016/j.jksus.2020.101281.
  • Mone, M. K.; Chandrasekhar, K. B. Development of Liquid Chromatographic Enantiomer Separation Methods and Validation for the Estimation of (R)-Enantiomer in Eslicarbazepine Acetate. J. Pharm. Biomed. Anal. 2011, 54, 248–251. DOI: 10.1016/j.jpba.2010.08.015.
  • Srinivas, M.; Avupati, N. R.; Sait, S.; Mukkanti, K. Stability Indicating HPLC Method for the Determination of Eslicarbazepine Acetate and Its Impurities in Bulk Drugs and Pharmaceutical Dosage Forms. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 1550–1564. DOI: 10.1080/10826076.2011.619043.
  • Fortuna, A.; Sousa, J.; Alves, G.; Falcão, A.; Soares-Da-Silva, P. Development and Validation of an HPLC-UV Method for the Simultaneous Quantification of Carbamazepine, Oxcarbazepine, Eslicarbazepine Acetate and Their Main Metabolites in Human Plasma. Anal. Bioanal. Chem. 2010, 397, 1605–1615. DOI: 10.1007/s00216-010-3673-0.
  • Fortuna, A.; Bicker, J.; Alves, G.; Falcão, A.; Soares-Da-Silva, P. A Chiral HPLC-UV Method for the Quantification of Dibenz[b,f]Azepine-5- Carboxamide Derivatives in Mouse Plasma and Brain Tissue: Eslicarbazepine Acetate, Carbamazepine and Main Metabolites. J. Sep. Sci. 2011, 34, 1391–1401. DOI: 10.1002/jssc.201100099.
  • Iram, F.; Alam, P.; Siddiqui, N. A.; Alqasoumi, S. I.; Siddiqui, A. A.; Khan, S. A.; Husain, A. Development of a Stress Induced Validated UPLC-PDA Method for the Analysis of Eslicarbazepine Acetate. Saudi Pharm. J. 2018, 26, 286–291. DOI: 10.1016/j.jsps.2017.11.009.
  • Sreenivasulu, V.; Rao, D. R.; Uma Maheswari, B. N.; Das, S. K.; Krishnaiah, A. Development and Validation of a Stability-Indicating RP - HPLC Method for Determination of Lacosamide. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 1–11. DOI: 10.37285/ijpsn.2019.12.5.3.
  • Mohamed, S.; Candela, C.; Riva, R.; Contin, M. Simple and Rapid Validated HPLC-Fluorescence Determination of Perampanel in the Plasma of Patients with Epilepsy. Pract. Lab. Med. 2018, 10, 15–20. DOI: 10.1016/j.plabm.2017.11.003.
  • Ramisetti, N. R.; Kuntamukkala, R.; Lakshetti, S.; Sripadi, P. Identification and Characterization of Stress Degradants of Lacosamide by LC-MS and ESI-Q-TOF-MS/MS: Development and Validation of a Stability Indicating RP-HPLC Method. J. Pharm. Biomed. Anal. 2014, 95, 256–264. DOI: 10.1016/j.jpba.2014.03.010.
  • Charagondla, K. A Validated Chiral Liquid Chromatographic Method for the Enantiomeric Separation of Lacosamide Drug Product and Its Dosage Forms. J. Chromatogr. Sep. Tech. 2015, 06, 280. DOI: 10.4172/2157-7064.1000280.
  • Hassib, S. T.; Hashem, H. M. A.; Mahrouse, M. A.; Mostafa, E. A. A Validated Reversed-Phase High-Performance Liquid Chromatography Method for Simultaneous Determination of Five Antiepileptic Drugs Used in the Treatment of Lennox-Gastaut Syndrome in Their Pharmaceutical Dosage Forms. Asian J. Pharm. Clin. Res. 2018, 11, 167–173. DOI: 10.22159/ajpcr.2018.v11i5.24143.
  • Patil, S. N.; Agrawal, P. N.; Kadam, A.; Manish, M.; Askshay, S. Development and Validation of Stability Indicating RP-HPLC Method for Estimation of Lacosamide in Bulk and Its Pharmaceutical Formulations. Int. J. Pharm. Sci. Rev. Res. 2014, 28, 164–168. DOI: 10.4236/ajac.2012.35050.
  • Valarmathi, R.; Senthamarai, R.; Akilandeswari, S.; Banu, S. F.; Saratha, R. Newer Analytical Validation of Lacosamide in Bulk and Their Tablet Dosage Form by RP-HPLC. World J. Pharm. Pharm. Sci. 2015, 4, 1083–1091.
  • Mohamed, F. A.; Ali, M. F. B.; Rageh, A. H.; Mostafa, A. M. Highly Sensitive UHPLC–DAD Method for Simultaneous Determination of Two Synergistically Acting Antiepileptic Drugs; Levetiracetam and Lacosamide: Application to Pharmaceutical Tablets and Human Urine. Biomed. Chromatogr. 2019, 33, 1–11. DOI: 10.1002/bmc.4554.
  • Nazma, S.; Yasaswini, P.; Supraja, M. S.; Vijayalakshmi, M.; Nalluri, B. N. Development and Validation of RP-HPLC Method for the Estimation of Lacosamide in Bulk and Parenteral Dosage Form. Int. J. Res. Pharm. Chem. 2015, 5, 355–360.
  • Baksam, V. K.; Saritha, N.; Mohan, S. K.; Shandilya, S.; Kumar, P. Identification and Characterization of Prothionamide Degradation Impurities by Mass Spectrometry, NMR Spectroscopy, and Ultra High Performance Liquid Chromatography Method Development. J. Sep. Sci. 2021, 44, 2078–2088. DOI: 10.1002/jssc.202100050.
  • Chauhan, A. Y.; Patel, C. J.; Patel, M. M. DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR DETERMINATION OF LACOSAMIDE AND ITS RELATED SUBSTANCE IN PARENTERAL DOSAGE FORM. World J. Pharm. Res. 2018, 7, 277–291. DOI: 10.20959/wjpr20188-11823.
  • Raul, S. K.; Mahapatra, A. K.; Ravi Kumar, B. V. V.; Patnaik, A. K. Stability Indicating RP-HPLC Method for the Estimation of Lacosamide in Bulk and Pharmaceutical Dosage Form. J. Chem. Pharm. Res 2013, 5, 732–739.
  • Patel, A.; Suhagia, B. N.; Patwari, A. Stability Indicating Assay Method for Quantification of Lacosamide in Bulk and Its Pharmaceutical Dosage Form and Characterization of Major Degradation Products. Int. J. Pharm. Pharm. Sci. 2014, 6, 593–599.
  • Mahesh, H. R. K.; Babu, S. K. Quantitative Estimation of Related Compounds of Lacosamide in Oral Solution by Using Reverse Phase HPLC. Der Pharm. Lett. 2015, 7, 285–291.
  • Carona, A.; Bicker, J.; Silva, R.; Silva, A.; Santana, I.; Sales, F.; Falcão, A.; Fortuna, A. HPLC Method for the Determination of Antiepileptic Drugs in Human Saliva and Its Application in Therapeutic Drug Monitoring. J. Pharm. Biomed. Anal. 2021, 197, 113961. DOI: 10.1016/j.jpba.2021.113961.
  • Molleti, S.; Rao, V.; Jayaveera, K. N. Stability Indicating RP-UPLC Method for the Determination of Lacosamide and Its Impurities in Bulk Drugs and Its Pharmaceutical Dosage Forms. Der. Pharma. Chem. 2013, 5, 81–89.
  • Srivastava, D. R. K. Determinitaion of Benzaldehyde Genotoxic Impurity in Lacosamide Drug Substances Using HPLC Technique. WJPPS 2017, 6, 1844–1851. DOI: 10.20959/wjpps20177-9630.
  • Kalyan Chakravarthy, V.; Gowri Shankar, D. HPLC Method for Determination of Lacosamide S(-)Enantiomer in Bulk and Pharmaceutical Formulation. Rasayan J. Chem. 2011, 4, 744–752.
  • Korany, M. A.; Mahgoub, H.; Haggag, R. S.; Ragab, M. A. A.; Elmallah, O. A. Green Gas Chromatographic Stability-Indicating Method for the Determination of Lacosamide in Tablets. Application to In-Vivo Human Urine Profiling. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1083, 75–85. DOI: 10.1016/j.jchromb.2018.02.033.
  • Kalyan Chakravarthy, Y.; Gowri Sankar, D. Stability Indicating HPLC Method for Determination of Lacosamide and Its Degradants/Impurities in Bulk and Pharmaceutical Formulation. Rasayan J. Chem. 2012, 5, 293–310.
  • Sabença, R.; Bicker, J.; Silva, R.; Carona, A.; Silva, A.; Santana, I.; Sales, F.; Falcão, A.; Fortuna, A. Development and Application of an HPLC-DAD Technique for Human Plasma Concentration Monitoring of Perampanel and Lamotrigine in Drug-Resistant Epileptic Patients. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1162, 122491. DOI: 10.1016/j.jchromb.2020.122491.
  • Mano, Y.; Takenaka, O.; Kusano, K. High-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perampanel, a Novel α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Antagonist in Human Plasma. J. Pharm. Biomed. Anal. 2015, 107, 56–62. DOI: 10.1016/j.jpba.2014.12.018.
  • Franco, V.; Marchiselli, R.; Fattore, C.; Tartara, E.; De Sarro, G.; Russo, E.; Perucca, E. Development and Validation of an HPLC-UV Assay for the Therapeutic Monitoring of the New Antiepileptic Drug Perampanel in Human Plasma. Ther. Drug Monit. 2016, 38, 744–750. DOI: 10.1097/FTD.0000000000000350.
  • Paul, D.; Allakonda, L.; Sahu, A.; Surendran, S.; Satheeshkumar, N. Pharmacokinetics and Brain Uptake Study of Novel AMPA Receptor Antagonist Perampanel in SD Rats Using a Validated UHPLC-QTOF-MS Method. J. Pharm. Biomed. Anal. 2018, 149, 234–241. DOI: 10.1016/j.jpba.2017.11.008.
  • Patel, C. J.; Patel, S. S.; Patel, M. M. Method Development and Stability Study by Chromatographic Method for Perampanel in API and Tablet Dosage Form. Int. J. Pharm. Drug Anal. 2017, 5, 229–240.
  • Mano, Y.; Takenaka, O.; Kusano, K. HPLC with Fluorescence Detection Assay of Perampanel, a Novel AMPA Receptor Antagonist, in Human Plasma for Clinical Pharmacokinetic Studies. Biomed. Chromatogr. 2015, 29, 1589–1593. DOI: 10.1002/bmc.3463.
  • Ohkubo, S.; Akamine, Y.; Ohkubo, T.; Kikuchi, Y.; Miura, M. Quantification of the Plasma Concentrations of Perampanel Using High-Performance Liquid Chromatography and Effects of the CYP3A4* 1G Polymorphism in Japanese Patients. J. Chromatogr. Sci. 2020, 58, 915–921. DOI: 10.1093/chromsci/bmaa060.
  • Saida, S. J.; Muthuchamy, M.; Kaliyaperumal, M.; Rumalla, C. S.; Yanaka, R.; Venkat Rao, S. Isolation and Spectral Characterization of Degradation Impurity in Perampanel Drug Substance Using UPLC-MS and NMR Spectroscopy: Validation of Assay Method by UPLC. Asian J. Chem. 2018, 30, 2215–2219. DOI: 10.14233/ajchem.2018.21405.
  • Charlier, B.; Coglianese, A.; Operto, F. F.; De Rosa, F.; Mensitieri, F.; Coppola, G.; Filippelli, A.; Dal Piaz, F.; Izzo, V. Perampanel Dosage in Plasma Samples: Development and Validation of a Novel HPLC Method with Combined UV-Fluorescence Detection. J. Pharm. Biomed. Anal. 2021, 204, 114252. DOI: 10.1016/j.jpba.2021.114252.
  • Mano, Y. An Inter-Laboratory Cross-Validation Study for the Determination of Perampanel in Human Plasma by Liquid Chromatography Assays. Biomed. Chromatogr. 2016, 30, 2067–2069. DOI: 10.1002/bmc.3764.
  • Tůma, P.; Bursová, M.; Sommerová, B.; Horsley, R.; Čabala, R.; Hložek, T. Novel Electrophoretic Acetonitrile-Based Stacking for Sensitive Monitoring of the Antiepileptic Drug Perampanel in Human Serum. J. Pharm. Biomed. Anal. 2018, 160, 368–373. DOI: 10.1016/j.jpba.2018.08.006.
  • Meirinho, S.; Campos, G.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Salting-out Assisted Liquid–Liquid Extraction Method Optimized by Design of Experiments for the Simultaneous High-Performance Liquid Chromatography Analysis of Perampanel and Stiripentol in Mouse Matrices. J. Sep. Sci. 2020, 43, 4289–4304. DOI: 10.1002/jssc.202000656.
  • Elhawi, M. M.; Hassan, W. S.; El-Sheikh, R.; El-Sayed, H. M. Multivariate Analysis of Perampanel in Pharmaceutical Formulations Using RP-HPLC. Chromatographia 2020, 83, 1335–1343. DOI: 10.1007/s10337-020-03950-8.
  • Karavadi, T. M.; Challa, B. R. Bioanalytical Method Development and Validation of Pregabalin in Rat Plasma by Solid Phase Extraction with HPLC-MS/MS: Application to a Pharmacokinetic Study. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 130–144. DOI: 10.1080/10826076.2012.738617.
  • Harnisch, H.; Chien, Y.; han, G. K.; Scriba, E. Capillary Electrophoresis Method for the Chiral Purity Determination of Pregabalin Derivatized with Dansyl Chloride. Chromatographia 2018, 81, 719–725. DOI: 10.1007/s10337-018-3495-3.
  • Chennuru, L. N.; Choppari, T.; Nandula, R. P.; Zhang, T.; Franco, P. Direct Separation of Pregabalin Enantiomers Using a Zwitterionic Chiral Selector by High Performance Liquid Chromatography Coupled to Mass Spectrometry and Ultraviolet Detection. Molecules 2016, 21, 1578. DOI: 10.3390/molecules21111578.
  • Prakash, L.; Himaja, M.; Ramakrishna Yadav, B.; Maheshwara Reddy, A. Cost-Effective Isolation of a Process Impurity of Pregabalin. Sci. Pharm. 2015, 83, 453–463. DOI: 10.3797/scipharm.1501-16.
  • Rao, S. N.; Somaiah, S.; Ravisankar, T.; Babu, K. S. Synthesis and Charecterization of Impurities of an Anticonvulsant Drug. Lamotrigine. Int. J. Pharm. Pharm. Sci. 2012, 4, 133–136.
  • Gujral, R. S.; Haque, S. M.; Shanker, P. A Sensitive Spectrophotometric Method for the Determination of Pregabalin in Bulk, Pharmaceutical Formulations and in Human Urine Samples. Int. J. Biomed. Sci. 2009, 5, 421–427.
  • Balaji, J.; Ramachandra, B.; Naidu, N. V. S. Analytical RP-HPLC Method for Development and Validation of Pregabalin in Bulk and the Determination of Pregabalin in Capsule Dosage Form. Int. J. Innov. Res. Sci. Eng. Technol. 2007, 3, 11094–11098.
  • Martinc, B.; Grabnar, I.; Mrhar, A.; Vovk, T. Rapid High-Performance Liquid Chromatography Method for Determination of Pregabalin in a Pharmaceutical Dosage Form Following Derivatization with Fluorescamine. J. AOAC Int. 2010, 93, 1069–1076.
  • Ponnekanti, K.; Sunitha, K.; Ganapaty, S. Development and Validation of New Rp-Hplc Method for Simultaneous Estimation of Methylcobalamin, Epalrestat and Pregabalin in Bulk and Pharmaceutical Dosage Form. RJPT 2021, 14, 5097–5100. DOI: 10.52711/0974-360X.2021.00888.
  • Sreekanth, D.; Ramya, P.; Vishwanadham, Y.; Vanitha, R. Development and Method Validation of RP-HPLC for Simultaneous Determination of Pregabalin and Methylcobalamin in Pure and Pharmaceutical Dosage Form. Asia. J. Res. Chem. 2017, 10, 557. DOI: 10.5958/0974-4150.2017.00092.X.
  • Patel, R. K.; Dholakiya, S.; Vaidya, S. a.; G, N. A Novel Spectrophotometric and RP-HPLC Methods for Determination of Nortriptyline Hydrochloride and Pregabalin in Tablets - Pharmaceutical Research and Allied Sciences. Int. J. Pharm. Res. Allied Sci. 2020, 9, 1–9.
  • Chen, X.; Zhang, D.; Deng, J.; Fu, X. Determination of Optical Impurity of Pregabalin by HPLC With Pre-Column Chiral Derivatization. J. Chromatogr. Sci. 2008, 46, 42–44. DOI: 10.1093/chromsci/46.1.42.
  • Mohan, A.; Rajkumar, J.; Bhavya, B.; Ashok Kumar, T. A. RP-HPLC Method Development and Validation for the Simultaneous Quantitative Estimation of Pregabalin, Mecobalamin and Alpha Lipoic Acid in Capsules. Int. J. Pharm. Pharm. Sci. 2014, 6, 270–277.
  • Ahmadkhaniha, R.; Mottaghi, S.; Zargarpoor, M.; Souri, E. Validated HPLC Method for Quantification of Pregabalin in Human Plasma Using 1-Fluoro-2,4-Dinitrobenzene as Derivatization Agent. Chromatogr. Res. Int. 2014, 2014, 1–6. DOI: 10.1155/2014/450461.
  • Gelani, H. D.; Chauhan, P. P.; Shah, S. K. Practical Implication of Chromatographic Method for Estimation of Aceclofenac and Pregabalin in Bulk and Pharmaceutical Dosage Forms. Chromatogr. Res. Int. 2014, 2014, 1–5. DOI: 10.1155/2014/643027.
  • Udayalakshmi, P.; Muthukumaran, M.; Krishnanmoorthy B. Simultaneous Estimation of Pregabalin and Methylcobalamin BYRP-HPLC in Bulk Drug and Combined Tablet Dosasge Form. Int. J. Pharm. Health Care Res. 2014, 2, 74–80.
  • Kannapan, N.; Nayak, S. P.; Venkatachalam, V. P. Analytical RP-HPLC Method for Development and Validation of Pregabalin and Methylcobalamine in Combined Capsule Formulation Analytical RP-HPLC Method for Development and Validation of Pregabalin and Methylcobalamine in Combined Capsule Formulation. J. Appl. Chem. Res. 2010, 13, 85–89.
  • Kavitha, M.; Rajasekhar, A. A Validated HPLC Method for the Analysis of Pregabalin and Methylcobalamin in Bulk and Pharmaceutical Formulation. Pharm. Glob. Int. J. Compr. Pharm. 2013, 7, 1–5.
  • Atta, A. M.; Mostafa, S.; Salama, I.; Gomaa, M. S. A New HPLC Method for Simultaneous Determination of Atenolol and Pregabalin in Dosage Forms and in Human Urine. Int. J. Pharm. Chem. Biol. Sci. 2016, 6, 48–61.
  • Seema, A.; Jeeja, P.; Ashish, J. Development and Validation of HPLC Method for Estimation of Pregabalin in Bulk & Capsule Dosage Form. Pharm. Anal. Acta 2016, 7, 6. DOI: 10.4172/2153-2435.1000492.
  • Douša, M.; Gibala, P.; Lemr, K. Liquid Chromatographic Separation of Pregabalin and Its Possible Impurities with Fluorescence Detection after Postcolumn Derivatization with O-Phtaldialdehyde. J. Pharm. Biomed. Anal. 2010, 53, 717–722. DOI: 10.1016/j.jpba.2010.04.008.
  • Akther, H.; Masud Morshed, M.; Mohaiminul Islam, M.; Hassan, J.; Barna Piyal Barua, T. B. E. Development of a Method and Its Validation for Estimation of Pregabaline in Pharmaceutical and Bulk Formulation. Biomed. Sci. Today 2015, 22,1–8.
  • Souri, E.; Eskandari, M.; Barazandeh Tehrani, M.; Adib, N.; Ahmadkhaniha, R. HPLC Determination of Pregabalin in Bulk and Pharmaceutical Dosage Forms After Derivatization With 1-Fluoro-2,4-Dinitrobenzene. Asian J. Chem. 2013, 25, 7332–7336. DOI: 10.14233/ajchem.2013.14624.
  • Jadhav, A. S.; Pathare, D. B.; Shingare, M. S. Validated Enantioselective LC Method, with Precolumn Derivatization With Marfey’s Reagent, for Analysis of the Antiepileptic Drug Pregabalin in Bulk Drug Samples. Chroma 2007, 65, 253–256. DOI: 10.1365/s10337-006-0152-z.
  • Khanage, S. G.; Kale, D. S.; Mohite, P. B.; Deshmukh, V. K. Reversed Phase High Performance Liquid Chromatographic Method for Simultaneous Estimation of Pregabalin and Aceclofenac in Tablet Formulation (Acenac-N). J. Reports Pharm. Sci. 2014, 3, 184–192.
  • Arayne, M. S. Monitoring of Pregabalin in Pharmaceutical Formulations and Human Serum Using UV and RP-HPLC Techniques: Application to Dissolution Test Method. Pharm. Anal. Acta 2014, 05, 287. DOI: 10.4172/2153-2435.1000287.
  • Potluri, H.; Battula, S. R.; Yeturu, S. Validated Stability Indicating RP-HPLC Method for Simultaneous Determination of Nortriptyline and Pregabalin in Bulk and Combined Dosage Formulations. J. Chil. Chem. Soc. 2017, 62, 3490–3495. DOI: 10.4067/S0717-97072017000200013.
  • Douša, M.; Srbek, J.; Rádl, S.; Černý, J.; Klecán, O.; Havlíček, J.; Tkadlecová, M.; Pekárek, T.; Gibala, P.; Nováková, L. Identification, Characterization, Synthesis and HPLC Quantification of New Process-Related Impurities and Degradation Products in Retigabine. J. Pharm. Biomed. Anal. 2014, 94, 71–76. DOI: 10.1016/j.jpba.2014.01.042.
  • Narmada, P.; Vijaya Lakshmi, G.; Nalini, G.; Gowtham, Y.; Suhasini, B.; Jogi, K. V. RP-HPLC Method Development and Validation for the Determination of Methylcobalamin and Pregabalin in Combined Capsule Dosage Form. Int. J. Res. Pharm. Sci. 2013, 4, 25–29.
  • Mathesan, R.; Alexander, S.; Shankar, M.; Florance, E.; Senthilkumar, R. Method Development and Validation of Aceclofenac and Pregabalin in Marketed Formulation by UPLC Method. Acta Biomed. Sci. 2020, 7, 25–30. DOI: 10.21276/abs.2020.7.1.5.
  • Ashutosh Kumar, S.; Debnath, M.; Seshagiri Rao, J. V. L. N.; Gowri Sankar, D. Stability Indicating Analytical Method Development and Validation for Simultaneous Estimation of Pregabalin, Mecobalamin and Alpha Lipoic Acid in Bulk as Well as in Pharmaceutical Dosage Form by Using RP-HPLC. Res. J. Pharm. Technol. 2014, 7, 1004–1013.
  • ANNAPURNA, M. M.; KUMAR, B. S. P.; GOUTAM, S. V.; SRINIVAS, L. Stability Indicating Liquid Chromatographic Method for the Quantitative Determination of Rufinamide in Pharmaceutical Dosage Forms. J. Drug Deliv. Ther 2012, 2, 167–174. DOI: 10.22270/jddt.v2i4.253.
  • Annapurna, M. M.; Madhuri, V. L.; Valli, D. S. New Stability Indicating Liquid Chromatographic Method for the Determination of Eplerenone in the Presence of Internal Standard. Asian J. Pharm. 2018, 12, S189–S194.
  • Contin, M.; Mohamed, S.; Candela, C.; Albani, F.; Riva, R.; Baruzzi, A. Simultaneous HPLC-UV Analysis of Rufinamide, Zonisamide, Lamotrigine, Oxcarbazepine Monohydroxy Derivative and Felbamate in Deproteinized Plasma of Patients with Epilepsy. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 461–465. DOI: 10.1016/j.jchromb.2009.11.039.
  • Dalvi, A. V.; Uppuluri, C. T.; Bommireddy, E. P.; Ravi, P. R. Design of Experiments-Based RP – HPLC Bioanalytical Method Development for Estimation of Rufinamide in Rat Plasma and Brain and Its Application in Pharmacokinetic Study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1102–1103, 74–82. DOI: 10.1016/j.jchromb.2018.10.014.
  • Vladimir, V. F. 済無No Title No Title No Title. Gastron. Ecuatoriana Tur. Local 1967, 1, 5–24.
  • Gáll, Z.; Vancea, S.; Dogaru, M. T.; Szilágyi, T. Liquid Chromatography-Mass Spectrometric Determination of Rufinamide in Low Volume Plasma Samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 940, 42–46. DOI: 10.1016/j.jchromb.2013.07.014.
  • Ganorkar, S. B.; Chaudhari, S. R.; Bobade, P. S.; Pawar, S. H.; Shirkhedkar, A. A. HPLC–PDA Identification and Resolution of Rufinamide Forced Degradation Impurities: A Congregated Chemometric Expedite Optimization Coupled With Factorials and Desirability. Biomed. Chromatogr. 2022, 36, e5345. DOI: 10.1002/bmc.5345.
  • Geetha, M.; Sait, S.; Sripal Reddy, P. A Stability Indicating UPLC Method for the Estimation of Related Substances, Assay and Dissolution of Rufinamide. Asian J. Chem. 2013, 25, 9775–9778. DOI: 10.14233/ajchem.2013.15314.
  • Hassib, S. T.; Hashem, H. M. A.; Mahrouse, M. A.; Mostafa, E. A. Development and Bio-Analytical Validation of Chromatographic Determination Method of Rufinamide in Presence of Its Metabolite in Human Plasma. J. Chromatogr. Sci. 2021, 59, 458–464. DOI: 10.1093/chromsci/bmaa142.
  • Hassib, S. T.; Hashem, H. M. A.; Mahrouse, M. A.; Mostafa, E. A. Determination of Rufinamide in the Presence of 1-[(2,6-Difluorophenyl)Methyl]-1H-1,2,3-Triazole-4 Carboxylic Acid Using RP-HPLC and Derivative Ratio Methods as Stability Indicating Assays to Be Applied on Dosage Form. J AOAC Int. 2020, 103, 1215–1222. DOI: 10.1093/jaoacint/qsaa020.
  • Sai Pavan Kumar, B.; Mathrusri Annapurna, M.; Pavani, S. Development and Validation of a Stability Indicating RP-HPLC Method for the Determination of Rufinamide. J. Pharm. Anal. 2013, 3, 66–70. DOI: 10.1016/j.jpha.2012.08.003.
  • Salunke, N.; Thipparaboina, R.; Chavan, R. B.; Lodagekar, A.; Mittapalli, S.; Nangia, A.; Shastri, N. R. Rufinamide: Crystal Structure Elucidation and Solid State Characterization. J. Pharm. Biomed. Anal. 2018, 149, 185–192. DOI: 10.1016/j.jpba.2017.11.003.
  • Parashar, V.; Todkar, M.; Shaikh, F.; Reddy, S.; Mehra, V.; Sinha, S. Validated Liquid Chromatographic Method for Quantitative Determination of Rufinamide Active Pharmaceutical Ingredient Form and Its Impurities. Pharm. Methods 2013, 4, 6–10. DOI: 10.1016/j.phme.2013.08.001.
  • Singh, J.; Sangwan, S.; Grover, P.; Mehta, L.; Kiran, D.; Goyal, A. Analytical Method Development and Validation for Assay of Rufinamide Drug. JPTRM 2013, 1, 191–203. DOI: 10.15415/jptrm.2013.12012.
  • Mahamuni, B. S.; Srinivas, R.; Talluri, M. V. K. Characterization of Forced Degradation Products of Rufinamide by LC/QTOF/MS/MS, NMR and IR Studies. Anal. Chem. Lett. 2018, 8, 405–415. DOI: 10.1080/22297928.2018.1438315.
  • Mazzucchelli, I.; Rapetti, M.; Fattore, C.; Franco, V.; Gatti, G.; Perucca, E. Development and Validation of an HPLC-UV Detection Assay for the Determination of Rufinamide in Human Plasma and Saliva. Anal. Bioanal. Chem. 2011, 401, 1013–1021. DOI: 10.1007/s00216-011-5126-9.
  • Meirinho, S.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Novel Bioanalytical Method for the Quantification of Rufinamide in Mouse Plasma and Tissues Using HPLC-UV: A Tool to Support Pharmacokinetic Studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1124, 340–348. DOI: 10.1016/j.jchromb.2019.06.021.
  • Patel, A.; Patwari, A.; Suhagia, B. Development of a Validated Stability-Indicating HPTLC Method for Rufinamide in Bulk and Its Pharmaceutical Dosage Form. J. Chromatogr Sci. 2014, 52, 1294–1301. DOI: 10.1093/chromsci/bmt171.
  • Rahman, H.; Manirul Haque, S. Development and Validation of Chromatographic and Spectrophotometric Methods for the Quantitation of Rufinamide in Pharmaceutical Preparations. Turk. J. Pharm. Sci. 2022, 19, 267–272. DOI: 10.4274/tjps.galenos.2021.37043.
  • Jewell, A.; Brookes, A.; Feng, W.; Ashford, M.; Gellert, P.; Butler, J.; Fischer, P. M.; Scurr, D. J.; Stocks, M. J.; Gershkovich, P. Distribution of a Highly Lipophilic Drug Cannabidiol into Different Lymph Nodes following Oral Administration in Lipidic Vehicle. Eur. J. Pharm. Biopharm. 2022, 174, 29–34. DOI: 10.1016/j.ejpb.2022.03.014.
  • Xu, S.; Zhang, H.; Li, C. Z.; Lai, P. S.; Wang, G.; Chan, Y. S.; Cheng, S. H.; Chen, X. Cannabidiol Promotes Fin Regeneration and Reduces Apoptosis in Zebrafish Embryos. J. Funct. Foods 2021, 86, 104694. DOI: 10.1016/j.jff.2021.104694.
  • Reber, J. D.; Karschner, E. L.; Seither, J. Z.; Knittel, J. L.; Walterscheid, J. P. Screening and Confirmation Methods for the Qualitative Identification of Nine Phytocannabinoids in Urine by LC-MS/MS. Clin. Biochem. 2021, 98, 54–62. DOI: 10.1016/j.clinbiochem.2021.09.005.
  • Izgelov, D.; Davidson, E.; Barasch, D.; Regev, A.; Domb, A. J.; Hoffman, A. Pharmacokinetic Investigation of Synthetic Cannabidiol Oral Formulations in Healthy Volunteers. Eur. J. Pharm. Biopharm. 2020, 154, 108–115. DOI: 10.1016/j.ejpb.2020.06.021.
  • Fraguas-Sánchez, A. I.; Fernández-Carballido, A.; Martin-Sabroso, C.; Torres-Suárez, A. I. Stability Characteristics of Cannabidiol for the Design of Pharmacological, Biochemical and Pharmaceutical Studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1150, 122188. DOI: 10.1016/j.jchromb.2020.122188.
  • Ocque, A. J.; Hagler, C. E.; DiFrancesco, R.; Lombardo, J.; Morse, G. D. Development and Validation of an Assay to Measure Cannabidiol and Δ9-Tetrahydrocannabinol in Human EDTA Plasma by UHPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1112, 56–60. DOI: 10.1016/j.jchromb.2019.03.002.
  • Gul, W.; Gul, S. W.; Radwan, M. M.; Wanas, A. S.; Mehmedic, Z.; Khan, I. I.; Sharaf, M. H. M.; ElSohly, M. A. Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using High-Performance Liquid Chromatography. J. AOAC Int. 2015, 98, 1523–1528. DOI: 10.5740/jaoacint.15-095.
  • Domínguez-Romero, J. C.; García-Reyes, J. F.; Molina-Díaz, A. Screening and Quantitation of Multiclass Drugs of Abuse and Pharmaceuticals in Hair by Fast Liquid Chromatography Electrospray Time-of-Flight Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2034–2042. DOI: 10.1016/j.jchromb.2011.05.034.
  • Moore, C.; Rana, S.; Coulter, C. Simultaneous Identification of 2-Carboxy-Tetrahydrocannabinol, Tetrahydrocannabinol, Cannabinol and Cannabidiol in Oral Fluid. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 459–464. DOI: 10.1016/j.jchromb.2007.02.016.
  • Nadulski, T.; Pragst, F. Simple and Sensitive Determination of Δ9-Tetrahydrocannabinol, Cannabidiol and Cannabinol in Hair by Combined Silylation, Headspace Solid Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 846, 78–85. DOI: 10.1016/j.jchromb.2006.08.015.
  • Scheidweiler, K. B.; Desrosiers, N. A.; Huestis, M. A. Simultaneous Quantification of Free and Glucuronidated Cannabinoids in Human Urine by Liquid Chromatography Tandem Mass Spectrometry. Clin. Chim. Acta 2012, 413, 1839–1847. DOI: 10.1016/j.cca.2012.06.034.
  • Nadulski, T.; Sporkert, F.; Schnelle, M.; Stadelmann, A. M.; Roser, P.; Schefter, T.; Pragst, F. Simultaneous and Sensitive Analysis of THC, 11-OH-THC, THC-COOH, CBD, and CBN by GC-MS in Plasma after Oral Application of Small Doses of THC and Cannabis Extract. J. Anal. Toxicol. 2005, 29, 782–789. DOI: 10.1093/jat/29.8.782.
  • DAI, Q.; TANG, M.; ZHANG, P.; BAO, X.; C, Y. Comparison of the Concentrations of Stiripentol and Its Self-Nanoemulsifying Drug Delivery System in Plasma and Brain of Rats. China Pharm. 2021, 13, 273–277.
  • Saleh, O. A.; El-Behairy, M. F.; Badawey, A. M.; El-Azzouny, A. A.; Aboul-Enein, H. Y. Analysis of Stiripentol Enantiomers on Several Chiral Stationary Phases: A Comparative Study. Chromatographia 2015, 78, 267–271. DOI: 10.1007/s10337-014-2818-2.
  • Takahashi, R.; Imai, K.; Yamamoto, Y.; Takahashi, Y.; Hamano, S.; Yoshida, H. Determination of Stiripentol in Plasma by High-Performance Liquid Chromatography with Fluorescence Detection. Iryo Yakugaku (Japanese J. Pharm. Heal. Care Sci. 2015, 41, 643–650. DOI: 10.5649/jjphcs.41.643.
  • Darwish, H. W.; Abdelhameed, A. S.; Attia, M. I.; Bakheit, A. H.; Khalil, N. Y.; Al-Majed, A. A. A Stability-Indicating HPLC-DAD Method for Determination of Stiripentol: Development, Validation, Kinetics, Structure Elucidation and Application to Commercial Dosage Form. J. Anal. Methods Chem. 2014, 2014, 638951. DOI: 10.1155/2014/638951.
  • El-Behairy, M. F.; Sundby, E. Synthesis of the Antiepileptic (R)-Stiripentol by a Combination of Lipase Catalyzed Resolution and Alkene Metathesis. Tetrahedron Asymmetry 2013, 24, 285–289. DOI: 10.1016/j.tetasy.2013.02.006.
  • Gayke, M.; Narode, H.; Eppa, G.; Bhosale, R. S.; Yadav, J. S. Synthetic Approaches toward the Synthesis of Brivaracetam: An Antiepileptic Drug. ACS Omega 2022, 7, 2486–2503. DOI: 10.1021/acsomega.1c05378.
  • Bhamare, P.; Dubey, R.; Upmanyu, N.; Umadoss, P. A Simple HPLC Method for In-Vitro Dissolution Study of Brivaracetam in Pharmaceutical Dosage Form. Asian J. Pharm. Anal. 2021, 11, 1–8. DOI: 10.5958/2231-5675.2021.00001.6.
  • Baksam, V.; Saritha, N.; Pocha, V. R.; Chakka, V. B.; Ummadi, R. R.; Kumar, P. Development of an Effective Novel Validated Stability-Indicating HPLC Method for the Resolution of Brivaracetam Stereoisomeric Impurities. Chirality 2020, 32, 1208–1219. DOI: 10.1002/chir.23269.
  • Li, Q.; Zhang, M.; Li, X.; Zhang, Y.; Wang, Z.; Zheng, J. A Novel Lipase from Aspergillus Oryzae WZ007 Catalyzed Synthesis of Brivaracetam Intermediate and Its Enzymatic Characterization. Chirality 2021, 33, 62–71. DOI: 10.1002/chir.23286.
  • Liao, S.; Chen, H.; Wang, G.; Wu, S.; Yang, Z.; Luo, W.; Liu, Z.; Gao, X.; Qin, J.; Li, C-h.; Wang, Z. Identification, Characterization, Synthesis and Strategy for Minimization of Potential Impurities Observed in the Synthesis of Brivaracetam. Tetrahedron 2020, 76, 131273. DOI: 10.1016/j.tet.2020.131273.
  • Bhamare, P.; Umadoss, P.; Upmanyu, N.; Dubey, R. Identification, Isolation, Structural Characterisation, Synthesis and: In Silico Toxicity Prediction of the Alkaline Hydrolytic Degradation Product of Brivaracetam by Using LC-PDA, Preparative HPLC, LC/HESI/LTQ, FTIR, and 1H NMR. Anal. Methods 2020, 12, 1868–1881. DOI: 10.1039/C9AY02582K.
  • Bourgogne, E.; Culot, B.; Dell’Aiera, S.; Chanteux, H.; Stockis, A.; Nicolas, J.-M. Off-Line Solid Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantitation of Brivaracetam Acid Metabolites: Method Validation and Application to In Vitro Metabolism Assays. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1086, 138–145. DOI: 10.1016/j.jchromb.2018.04.018.
  • Iqbal, M.; Ezzeldin, E.; Al-Rashood, K. A. UPLC–MS/MS Assay for Identification and Quantification of Brivaracetam in Plasma Sample: Application to Pharmacokinetic Study in Rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060, 63–70. DOI: 10.1016/j.jchromb.2017.05.039.
  • Stockis, A.; Sargentini-Maier, M. L.; Brodie, M. J. Pharmacokinetic Interaction of Brivaracetam on Carbamazepine in Adult Patients With Epilepsy, With and Without Valproate Co-Administration. Epilepsy Res. 2016, 128, 163–168. DOI: 10.1016/j.eplepsyres.2016.11.001.
  • Stockis, A.; Rolan, P. Effect of Brivaracetam (400 Mg/Day) on the Pharmacokinetics and Pharmacodynamics of a Combination Oral Contraceptive in Healthy Women. J. Clin. Pharmacol. 2013, 53, 1313–1321. DOI: 10.1002/jcph.187.
  • Raveendra Babu, G.; Sowjanya, M.; Rama Ayyappa, M.; Ravi Kumar, A.; Anusha, C.; Priyanka, A.; Eswari Bhavani, T.; Krishna Sindu, G.; Raja Shekar, K.; Ramesh, D. A Novel Stability-Indicating RP-UPLC Method for the Determination of Cenobamate in Bulk and Pharmaceutical Dosage Forms. Res. J. Pharm. Technol. 2021, 14, 1221–1225. DOI: 10.5958/0974-360X.2021.00217.1.
  • Vernillet, L.; Greene, S. A.; Kim, H. W.; Melnick, S. M.; Glenn, K. Mass Balance, Metabolism, and Excretion of Cenobamate, a New Antiepileptic Drug, After a Single Oral Administration in Healthy Male Subjects. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 513–522. DOI: 10.1007/s13318-020-00615-7.
  • Oh, J. H.; Jeong, J. W.; Ji, Y. G.; Shin, Y. M.; Lee, K. R.; Hyung Cho, K.; Koo, T. S. Development of a Liquid Chromatography-Tandem Mass Spectrometry Method for Assaying Cenobamate in Rat Plasma. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 992–997. DOI: 10.1080/10826076.2018.1547743.
  • Bibi, D.; Shusterman, B.; Nocentini, A.; Supuran, C. T.; Bialer, M. Stereoselective Pharmacokinetic and Pharmacodynamic Analysis of a CNS-Active Sulphamoylphenyl Carbamate Derivative. J. Enzyme Inhib. Med. Chem. 2019, 34, 1078–1082. DOI: 10.1080/14756366.2019.1612887.
  • Jin, R.; Li, L.; Guo, L.; Li, W.; Shen, Q. A Graphene Tip Coupled with Liquid Chromatography Tandem Mass Spectrometry for the Determination of Four Synthetic Adulterants in Slimming Supplements. Food Chem. 2017, 224, 329–334. DOI: 10.1016/j.foodchem.2016.12.091.
  • Shi, Y.; Sun, C.; Gao, B.; Sun, A. Development of a Liquid Chromatography Tandem Mass Spectrometry Method for Simultaneous Determination of Eight Adulterants in Slimming Functional Foods. J. Chromatogr. A 2011, 1218, 7655–7662. DOI: 10.1016/j.chroma.2011.08.038.
  • WANG, L. I. N. G.; FENG, F. A. N. G.; QUAN WANG, X. U. E.; Z, L. Influences of Urinary PH on the Pharmacokinetics of Three Amphetamine-Type Stimulants Using a New High-Performance Liquid Chromatographic Method. J. Pharm. Sci. 2009, 98, 728–38738. DOI: 10.1002/jps.21438.
  • Kaddoumi, A.; Wada, M.; Nakashima, M. N.; Nakashima, K. Hair Analysis for Fenfluramine and Norfenfluramine as Biomarkers for N-Nitrosofenfluramine Ingestion. Forensic Sci. Int. 2004, 146, 39–46. DOI: 10.1016/j.forsciint.2004.03.018.
  • Kaddoumi, A.; Nakashima, M. N.; Maki, T.; Matsumura, Y.; Nakamura, J.; Nakashima, K. Liquid Chromatography Studies on the Pharmacokinetics of Phentermine and Fenfluramine in Brain and Blood Microdialysates After Intraperitoneal Administration to Rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 791, 291–303. DOI: 10.1016/S1570-0232(03)00231-9.
  • Kaddoumi, A.; Nakashima, M. N.; Nakashima, K. Fluorometric Determination of DL-Fenfluramine, DL-Norfenfluramine and Phentermine in Plasma by Achiral and Chiral High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 2001, 763, 79–90. DOI: 10.1016/S0378-4347(01)00368-1.
  • Namera, A.; Yashiki, M.; Liu, J.; Okajima, K.; Hara, K.; Imamura, T.; Kojima, T. Simple and Simultaneous Analysis of Fenfluramine, Amphetamine and Methamphetamine in Whole Blood by Gas Chromatography-Mass Spectrometry after Headspace-Solid Phase Microextraction and Derivatization. Forensic Sci. Int. 2000, 109, 215–223. DOI: 10.1016/S0379-0738(00)00145-6.
  • Zeng, S.; Mao, H. Q. Stereoselective Determination of Fenfluramine Enantiomers in Rat Liver Microsomal Incubates. J. Chromatogr. B Biomed. Sci. Appl. 1999, 727, 107–112. DOI: 10.1016/S0378-4347(99)00044-4.
  • Caccia, S.; Jori, A. Gas-Liquid Ckromatographic Determination of the Optical Isomers of Fen- Fluramine and Norfenfluramine in Biological Samples. J. Chromatogr. 1977, 144, 127–131. DOI: 10.1016/0021-9673(77)80016-2.
  • Clausing, P.; Rushing, L. G.; Newport, G. D.; Bowyer, J. F. Determination of D-Fenfluramine, D-Norfenfluramine and Fluoxetine in Plasma, Brain Tissue and Brain Microdialysate Using High Performance Liquid Chromatography After Precolumn Derivatization with Dansyl Chloride. J. Chromatogr. B Biomed. Appl. 1997, 692, 419–426. DOI: 10.1016/S0378-4347(96)00528-2.
  • Zeng, J. N.; Dou, L.; Duda, M.; Stuting, H. H. New Chiral High-Performance Liquid Chromatographic Methodology Used for the Pharmacokinetic Evaluation of Dexfenfluramine. J. Chromatogr. B Biomed. Sci. Appl. 1994, 654, 231–248. DOI: 10.1016/0378-4347(94)00004-2.
  • Elizabeth, T. Q. Improved Gas-Liquid Chromatographic Method for Measuring Fenfluramine and Norfenfluramine in Heparinised Plasma. J. Chromatogr. B Biomed. Sci. Appl. 1983, 278, 434–438.
  • Belvedere, G.; Tognoni, G.; Morselli, P. L. A New Sensitive Gas-Chromatographic Method for the Determination of Fenfluramine in Biological Specimens. Eur. J. Clin. Pharmacol. 1972, 5, 62–64. DOI: 10.1007/BF00560898.
  • Campbell, D. B. Gas Chromatographic Measurement of Levels of Fenfluramine and Norfenfluramine in Human Plasma Red Cells and Urine following Therapeutic Doses. J. Chromatogr. A 1970, 49, 442–447. DOI: 10.1016/S0021-9673(00)93657-4.
  • Langer, C.; Süss, R. HPLC-DAD-CAD-Based Approach for the Simultaneous Analysis of Hydrophobic Drugs and Lipid Compounds in Liposomes and for Cyclodextrin/Drug Inclusion Complexes. J. Pharm. Biomed. Anal. 2021, 201, 114120. DOI: 10.1016/j.jpba.2021.114120.
  • Dinéia Perez, J.; Sanches Aragão, D.; Aparecida Ronchi, F.; Febba, A. C.; Rosso, C. F.; Tedesco-Silva Junior, H.; Medina de Abreu Pestana, J. O.; Casarini, D. E. Simultaneous Determination of Everolimus, Sirolimus, Tacrolimus, and Cyclosporine-A by Mass Spectrometry. Transplant Proc. 2020, 52, 1402–1408. DOI: 10.1016/j.transproceed.2020.01.077.
  • Sottani, C.; Grignani, E.; Mazzucchelli, S.; Bonizzi, A.; Corsi, F.; Negri, S.; Prati, F.; Calleri, E.; Cottica, D. Development and Validation of a Simple and Versatile Method for the Quantification of Everolimus Loaded in H-Ferritin Nanocages Using UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2020, 191, 113644. DOI: 10.1016/j.jpba.2020.113644.
  • Taibon, J.; van Rooij, M.; Schmid, R.; Singh, N.; Albrecht, E.; Anne Wright, J.; Geletneky, C.; Schuster, C.; Mörlein, S.; Vogeser, M.; et al. An Isotope Dilution LC-MS/MS Based Candidate Reference Method for the Quantification of Cyclosporine A, Tacrolimus, Sirolimus and Everolimus in Human Whole Blood. Clin. Biochem. 2020, 82, 73–84. DOI: 10.1016/j.clinbiochem.2019.11.006.
  • Krnáč, D.; Reiffová, K.; Rolinski, B. A New HPLC-MS/MS Method for Simultaneous Determination of Cyclosporine A, Tacrolimus, Sirolimus and Everolimus for Routine Therapeutic Drug Monitoring. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1128, 121772. DOI: 10.1016/j.jchromb.2019.121772.
  • Knapen, L. M.; de Beer, Y.; Brüggemann, R. J. M.; Stolk, L. M.; de Vries, F.; Tjan-Heijnen, V. C. P.; Erp, N. P. V.; Croes, S. Development and Validation of an Analytical Method Using UPLC–MS/MS to Quantify Everolimus in Dried Blood Spots in the Oncology Setting. J. Pharm. Biomed. Anal. 2018, 149, 106–113. DOI: 10.1016/j.jpba.2017.10.039.
  • Giovagnoli, S.; Cassano, T.; Pace, L.; Magini, A.; Polchi, A.; Tancini, B.; Perluigi, M.; De Marco, F.; Emiliani, C.; Dolcetta, D. Evaluation of a LC-MS Method for Everolimus Preclinical Determination in Brain by Using [13C2D4]RAD001 Internal Standard. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 985, 155–163. DOI: 10.1016/j.jchromb.2015.01.035.
  • Kamberi, M.; Tran, T. N. UV-Visible Spectroscopy as an Alternative to Liquid Chromatography for Determination of Everolimus in Surfactant-Containing Dissolution Media: A Useful Approach Based on Solid-Phase Extraction. J. Pharm. Biomed. Anal. 2012, 70, 94–100. DOI: 10.1016/j.jpba.2012.05.038.
  • Mueller, D. M.; Rentsch, K. M. Sensitive Quantification of Sirolimus and Everolimus by LC-MS/MS with Online Sample Cleanup. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 1007–1012. DOI: 10.1016/j.jchromb.2010.02.029.
  • Khoschsorur, G. A.; Fruehwirth, F.; Zelzer, S.; Stettin, M.; Halwachs-Baumann, G. Comparison of Fluorescent Polarization Immunoassay (FPIA) Versus HPLC to Measure Everolimus Blood Concentrations in Clinical Transplantation. Clin. Chim. Acta 2007, 380, 217–221. DOI: 10.1016/j.cca.2007.01.017.
  • Salm, P.; Warnholtz, C.; Boyd, J.; Arabshahi, L.; Marbach, P.; Taylor, P. J. Evaluation of a Fluorescent Polarization Immunoassay for Whole Blood Everolimus Determination Using Samples from Renal Transplant Recipients. Clin. Biochem. 2006, 39, 732–738. DOI: 10.1016/j.clinbiochem.2006.03.019.
  • Baldelli, S.; Zenoni, S.; Merlini, S.; Perico, N.; Cattaneo, D. Simultaneous Determination of Everolimus and Cyclosporine Concentrations by HPLC with Ultraviolet Detection. Clin. Chim. Acta 2006, 364, 354–358. DOI: 10.1016/j.cca.2005.07.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.