202
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging trends in extraction and analytical techniques for bromelain

, ORCID Icon, , &

References

  • Taussig, S. J.; Batkin, S. Bromelain, the Enzyme Complex of Pineapple (Ananas Comosus) and Its Clinical Application. An Update. J. Ethnopharmacol. 1988, 22, 191–203. DOI: 10.1016/0378-8741(88)90127-4.
  • Hale, L. P.; Greer, P. K.; Trinh, C. T.; James, C. L. Proteinase Activity and Stability of Natural Bromelain Preparations. Int. Immunopharmacol. 2005, 5, 783–793. DOI: 10.1016/j.intimp.2004.12.007.
  • Bhattacharyya, B. K. Bromelain: An Overview. Nat. Prod. Rad. 2008, 7, 359.
  • Pavan, R.; Jain, S.; Kumar.; A.; Shraddha. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012, 976203. DOI: 10.1155/2012/976203.
  • Vidhya, R.; Noorjahan, B. A.; Subramaniam, S.; Samikannu, K.; Rajendran, R. Potential Role of Bromelain in Clinical and Therapeutic Applications (Review). Biomed. Rep. 2016, 5, 283. DOI: 10.3892/br.2016.720.
  • Neumayer, C.; Fügl, A.; Nanobashvili, J.; Blumer, R.; Punz, A.; Gruber, H.; Polterauer, P.; Huk, I. Combined Enzymatic and Antioxidative Treatment Reduces Ischemia-Reperfusion Injury in Rabbit Skeletal Muscle. J. Surg. Res. 2006, 133, 150–158. DOI: 10.1016/j.jss.2005.12.005.
  • Juhasz, B.; Thirunavukkarasu, M.; Pant, R.; Zhan, L.; Varma Penumathsa, S.; Secor, E. R. Jr., Srivastava, S.; Raychaudhuri, U.; Menon, V. P.; Otani, H.; et al. Bromelain Induces Cardioprotection against Ischemia-Reperfusion Injury through Akt/FOXO Pathway in Rat Myocardium. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, 1365. DOI: 10.1152/ajpheart.01005.2007.
  • Bhui, K.; Prasad, S.; George, J.; Shukla, Y. Bromelain Inhibits COX-2 Expression by Blocking the Activation of MAPK Regulated NF-Kappa B against Skin Tumor-Initiation Triggering Mitochondrial Death Pathway. Cancer Lett. 2009, 282, 167–176. DOI: 10.1016/j.canlet.2009.03.003.
  • Desser, L.; Rehberger, A.; Paukovits, W. Proteolytic Enzymes and Amylase Induce Cytokine Production in Human Peripheral Blood Mononuclear Cells In Vitro. Cancer Biother. 1994, 9, 253–263. DOI: 10.1089/cbr.1994.9.253.
  • Engwerda, C. R.; Andrew, D.; Murphy, M.; Mynott, T. L. Bromelain Activates Murine Macrophages and Natural Killer Cells In Vitro. Cell. Immunol. 2001, 210, 5–10. DOI: 10.1006/cimm.2001.1793.
  • Engwerda, C. R.; Andrew, D.; Ladhams, A.; Mynott, T. L. Bromelain Modulates T Cell and B Cell Immune Responses In Vitro and In Vivo. Cell. Immunol. 2001, 210, 66–75. DOI: 10.1006/cimm.2001.1807.
  • Barth, H.; Guseo, A.; Klein, R. In Vitro Study on the Immunological Effect of Bromelain and Trypsin on Mononuclear Cells from Humans. Eur. J. Med. Res. 2005, 10, 325–331.
  • Báez, R.; Lopes, M. T.; Salas, C. E.; Hernández, M. In Vivo Antitumoral Activity of Stem Pineapple (Ananas comosus) Bromelain. Planta Med. 2007, 73, 1377–1383. DOI: 10.1055/s-2007-990221.
  • Taussig, S. J.; Szekerczes, J.; Batkin, S. Inhibition of Tumour Growth In Vitro by Bromelain, an Extract of the Pineapple Plant (Ananas comosus). Planta Med. 1985, 51, 538–539. DOI: 10.1055/s-2007-969596.
  • Tysnes, B. B.; Maurer, H. R.; Porwol, T.; Probst, B.; Bjerkvig, R.; Hoover, F. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells. Neoplasia 2001, 3, 469–479. DOI: 10.1038/sj.neo.7900196.
  • Makrydimas, G.; Zagorianakou, N.; Zagorianakou, P.; Agnantis, N. J. CD44 Family and Gynaecological Cancer. In Vivo 2003, 17, 633–640. PMID: 14758731
  • Bierie, B.; Moses, H. TGFβ: The Molecular Jekyll and Hyde of Cancer. Nat. Rev. Cancer 2006, 6, 506–520. DOI: 10.1038/nrc1926.
  • Gaspani, L.; Limiroli, E.; Ferrario, P.; Bianchi, M. In Vivo and In Vitro Effects of Bromelain on PGE2 and SP Concentrations in the Inflammatory Exudate in Rats. Pharmacology 2002, 65, 83–86. DOI: 10.1159/000056191.
  • Bin Emran, T.; Atiar Rahman, M.; Muhammad Nasir Uddin, M.; Mominur Rahman, M.; Zia Uddin, M.; Dash, R.; Layzu, C. Effects of Organic Extracts and Their Different Fractions of Five Bangladeshi Plants on In Vitro Thrombolysis. BMC Complementary Medicine and Therapies 2015, 15, 128. DOI: 10.1186/s12906-015-0643-2.
  • Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. DOI: 10.1016/S0021-9258(19)52451-6.
  • Pirofsky, B.; Mangum, M. E. Jr. Use of Bromelin to Demonstrate Erythrocyte Antibodies. Proc. Soc. Exp. Biol. Med. 1959, 101, 49–52. DOI: 10.3181/00379727-101-24828.
  • Lambert, R.; Edwards, J.; Anstee, D. J. A Simple Method for the Standardization Ofproteolytic Enzymes Used in Blood Group Serology. Med. Lab. Sci. 1978, 35, 233.
  • Mamo, J.; Assefa, F. Antibacterial and Anticancer Property of Bromelain: A Plant Protease Enzyme from Pineapples (Ananas comosus). CTBEB 2019, 19, 60. DOI: 10.19080/CTBEB.2019.19.556009.
  • Manzoor, Z.; Nawaz, A.; MukhtarIkram Haq, H. Bromelain: Methods of Extraction, Purification and Therapeutic Applications. Braz. Arch. Biol. Technol. 2016, 59, 59. DOI: 10.1590/1678-4324-2016150010.
  • Coulter, C. B.; Stone, F. M.; Kabat, E. A. The Structure of the Ultraviolet Absorption Spectra of Certain Proteins and Amino Acids. J. Gen. Physiol. 1936, 19, 739–752. DOI: 10.1085/jgp.19.5.739.
  • Wetlaufer, D. B. Ultraviolet Spectra of Proteins and Amino Acids. Adv. Protein Chem. 1963, 17, 303. DOI: 10.1016/S0065-3233(08)60056-X.
  • Zijlstra, W. G.; Buursma, A.; Meeuwsen-van der Roest, W. P. Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin. Clin. Chem. 1991, 37, 1633–1638. DOI: 10.1093/clinchem/37.9.1633.
  • Parson, W. W. Modern Optical Spectroscopy; Springer: Berlin, 2007; Vol. 2. DOI: 10.1007/978-3-662-46777-0.
  • Noble, J. E.; Bailey, M. J. Chapter 8: Quantitation of Protein. Methods Enzymol. 2009, 463, 73. DOI: 10.1016/S0076-6879(09)63008-1.
  • Hollas, J. M. Modern Spectroscopy; John Wiley & Sons, 2004, New Jersey: Hoboken.
  • Mäntele, W.; Deniz, E. UV–VIS Absorption Spectroscopy: Lambert-Beer Reloaded. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2017, 173, 965–968. DOI: 10.1016/j.saa.2016.09.037.
  • Saager, R. B.; Baldado, M. L.; Rowland, R. A.; Kelly, K. M.; Durkin, A. J. Method Using In Vivo Quantitative Spectroscopy to Guide Design and Optimization of Low-Cost, Compact Clinical Imaging Devices: Emulation and Evaluation of Multispectral Imaging Systems. J. Biomed. Opt. 2018, 23, 1–12. DOI: 10.1117/1.JBO.23.4.046002.
  • Blaffert, J.; Hashemi Haeri, H.; Blech, M.; Hinderberger, D.; Garidel, P. Spectroscopic Methods for Assessing the Molecular Origins of Macroscopic Solution Properties of Highly Concentrated Liquid Protein Solutions. Anal. Biochem. 2018, 561–562, 70–88. DOI: 10.1016/j.ab.2018.09.013.
  • Schuler, B.; Hofmann, H. Single-Molecule Spectroscopy of Protein Folding Dynamics—Expanding Scope and Timescales. Curr. Opin. Struct. Biol. 2013, 23, 36–47. DOI: 10.1016/j.sbi.2012.10.008.
  • Berndsen, C. E.; Wolberger, C. A Spectrophotometric Assay for Conjugation of Ubiquitin and Ubiquitin-like Proteins. Anal. Biochem. 2011, 418, 102–110. DOI: 10.1016/j.ab.2011.06.034.
  • Guca, E.; Roumestand, C.; Vallone, B.; Royer, C. A.; Dellarole, M. Low-Cost Equilibrium Unfolding of Heme Proteins Using 2 µL Samples. Anal. Biochem. 2013, 443, 13–15. DOI: 10.1016/j.ab.2013.08.006.
  • Holyavka, M.; Pankova, S.; Koroleva, V.; Vyshkvorkina, Y.; Lukin, A.; Kondratyev, M.; Artyukhov, V. Influence of UV Radiation on Molecular Structure and Catalytic Activity of Free and Immobilized Bromelain, Ficin and Papain. J. Photochem. Photobiol. B 2019, 201, 111681. DOI: 10.1016/j.jphotobiol.2019.111681.
  • Chełminiak-Dudkiewicz, D.; Ziegler-Borowska, M.; Stolarska, M.; Sobotta, L.; Falkowski, M.; Mielcarek, J.; Goslinski, T.; Kowalonek, J.; Węgrzynowska-Drzymalska, K.; Kaczmarek, H. The Chitosan – Porphyrazine Hybrid Materials and Their Photochemical Properties. J. Photochem. Photobiol. B 2018, 181, 1–13. DOI: 10.1016/j.jphotobiol.2018.02.021.
  • Holyavka, M. G.; Artyukhov, V. G.; Sazykina, S. M.; Nakvasina, M. A. Physical, Chemical, and Kinetic Properties of Trypsin-Based Heterogeneous Biocatalysts Immobilized on Ion-Exchange Fiber Matrices. Pharm. Chem. J. 2017, 51, 702–706. DOI: 10.1007/s11094-017-1678-0.
  • Nwamaka Nwagu, T.; Ugwuodo, C. J. Stabilizing Bromelain for Therapeutic Applications by Adsorption Immobilization on Spores of Probiotic Bacillus. Int. J. Biol. Macromol. 2019, 127, 406–414. DOI: 10.1016/j.ijbiomac.2019.01.061.
  • Tan, Y.; Liu, C.; Yu, L.; Chen, X. Effect of Linoleic-Acid Modified Carboxymethyl Chitosan on Bromelain Immobilization onto Self-Assembled Nanoparticles. Front. Mater. Sci. China 2008, 2, 209–213. DOI: 10.1007/s11706-008-0035-3.
  • Nwagu, T. N.; Ugwuodo, C. J.; Onwosi, C. O.; Inyima, O.; Uchendu, O. C.; Akpuru, C. Evaluation of the Probiotic Attributes of Bacillus Strains Isolated from Traditional Fermented African Locust Bean Seeds (Parkia biglobosa), “Daddawa”. Ann. Microbiol. 2020, 70. DOI: 10.1186/s13213-020-01564-x.
  • Thakur, S.; Verma, P. Inventi Impact-Pharma Analysis and Quality Assurance, 2011.
  • Leipner, J.; Iten, F.; Saller, R. Therapy with Proteolytic Enzymes in Rheumatic Disorders. BioDrugs 2001, 15, 779–789. DOI: 10.2165/00063030-200115120-00001.
  • Fasman, G. D. Circular Dichroism and the Conformational Analysis of Biomolecules; Springer: Boston, MA, 1996.
  • Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Vicini, S.; Marsano, E. The Influence of UV Irradiation on the Mechanical Properties of Chitosan/Poly(Vinyl Pyrrolidone) Blends. Polym. Degrad. Stab. 2005, 88, 261–267. DOI: 10.1016/j.polymdegradstab.2004.08.018.
  • Dubey, R.; Reddy, S. Extraction and Purification of Bromelain. Asian J. Chem. 2012, 24, 1435.
  • Wani, S. S.; Mashru, R. C. Sensitive and Selective Methods for Determination of Proteolytic Activity of Formulation Containing Bromelain and Trypsin as Proteolytic Enzymes. Int. J. Pharma. Sci. Res. 2014, 5, 4838. DOI: 10.13040/IJPSR.0975-8232.5(11).4838-45.
  • Gorgazlidze, N.; Getia, M. Development of Method for Quantitative Determination of Bromelain in Gel Formulation. International Conference and Exhibition of Material Science and Chemistry, 2018; Vol. 7. DOI: 10.4172/2169-0022-C5-104.
  • Lavrinenko, I. A.; Holyavka, M. G.; Chernov, V. E.; Artyukhov, V. G. Second Derivative Analysis of Synthesized Spectra for Resolution and Identification of Overlapped Absorption Bands of Amino Acid Residues in Proteins: Bromelain and Ficin Spectra in the 240–320 nm Range. Spectrochim. Acta Part A 2020, 227, 117722. DOI: 10.1016/j.saa.2019.117722.
  • Jassim Hasson, K. Comparative Study of Prepared Bromelain Gel Formulations and Their Evaluation by HPLC Determination. AJPS 2016, 16, 77–81. DOI: 10.32947/ajps.v16i2.113.
  • Gorgaslidze, N.; Getia, M. Plant Proteases, Their Properties and Therapeutic Use. J. Chem. Technol. Appl. 2018, 2, 15.
  • Goday, S.; Abdulrahaman, S.; Prameelarani, A. A New Improved RP-HPLC Method for Assay of Bromelain, Trypsin, Rutoside and Diclofenac in Bulk and Pharmaceutical Formulation. Asian J. Pharma. Health Sci. 2019, 9, 2025.
  • Yantih, N.; Methananda, A.; Harahap, Y.; Sumaryono, W.; Rahayu, L. Validation of High-Performance Liquid Chromatography for Determination of Bromelain in Pineapple (Ananas comosus (L) Merr.) Water. PJ 2019, 11, 901–906. DOI: 10.5530/pj.2019.11.144.
  • Swapna, G.; Abdulrahaman, S.; Prameelarani, A. Development and Validation of Stability Indicating RP-HPLC Method for Determination of Bromelain, Trypsin, Rutoside and Diclofenac in Bulk and Pharmaceutical Dosage Form. Int. J. Life Sci. Pharma. Res. 2019, 9, 19. DOI: 10.22376/ijpbs/lpr.2019.9.4.P19-27.
  • Helber, B. C.; Patricia, M. B.; Wanderson, R.; José, A. V. A New Procedure Based on Column Chromatography to Purify Bromelain by Ion Exchange plus Gel Filtration Chromatographies. Ind. Crops Prod. 2014, 59, 163. DOI: 10.1016/j.indcrop.2014.04.042.
  • Babu, B. R.; Rastogi, N. K.; Raghavarao, K. Liquid–Liquid Extraction of Bromelain and Polyphenol Oxidase Using Aqueous Two-Phase System. Chem. Eng. Process 2008, 47, 83–89. DOI: 10.1016/j.cep.2007.08.006.
  • Rabelo, A. P. B.; Tambourgi, E. B.; Pessoa, A. Jr. Bromelain Partitioning in Two-Phase Aqueous Systems Containing PEO–PPO–PEO Block Copolymers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 807, 61–68. DOI: 10.1016/j.jchromb.2004.03.029.
  • Wang, L.; Li, W.; Liu, Y.; Zhi, W.; Han, J.; Wang, Y.; Ni, L. Green Separation of Bromelain in Food Sample with High Retention of Enzyme Activity Using Recyclable Aqueous Two-Phase System Containing a New Synthesized Thermo-Responsive Copolymer and Salt. Food Chem. 2019, 282, 48–57. DOI: 10.1016/j.foodchem.2019.01.005.
  • Navapara, R. D.; Avhad, D. N.; Rathod, V. K. Application of Response Surface Methodology for Optimization of Bromelain Extraction in Aqueous Two-Phase System. Sep. Sci. Technol. 2011, 46, 1838–1847. DOI: 10.1080/01496395.2011.578101.
  • Pakhale, S. V.; Vetal, M. D.; Rathod, V. K. Separation of Bromelain by Aqueous Two Phase Flotation. Sep. Sci. Technol. 2013, 48, 984–989. DOI: 10.1080/01496395.2012.712596.
  • Cheang, B.; Zydney, A. L. A Two-Stage Ultrafiltration Process for Fractionation of Whey Protein Isolate. J. Membr. Sci. 2004, 231, 159–167. DOI: 10.1016/j.memsci.2003.11.014.
  • Datta, D.; Bhattacharjee, S.; Nath, A.; Das, R.; Bhattacharjee, C.; Datta, S. Separation of Ovalbumin from Chicken Egg White Using Two-Stage Ultrafiltration Technique. Sep. Purif. Technol. 2009, 66, 353–361. DOI: 10.1016/j.seppur.2008.12.016.
  • Takaç, S.; Elmas, S.; Çalık, P.; Özdamar, T. H. Separation of the Protease Enzymes of Bacillus licheniformis from the Fermentation Medium by Crossflow Ultrafiltration. J. Chem. Technol. Biotechnol. 2000, 75, 491–499. DOI: 10.1002/1097-4660(200006)75:6 < 491::AID-JCTB245 > 3.0.CO;2-5.
  • Polyakov, Y. S.; Zydney, A. L. Ultrafiltration Membrane Performance: Effects of Pore Blockage/Constriction. J. Membr. Sci. 2013, 434, 106–120. DOI: 10.1016/j.memsci.2013.01.052.
  • Nor, M. Z. M.; Ramchandran, L.; Duke, M.; Vasiljevic, T. Separation of Bromelain from Crude Pineapple Waste Mixture by a Two-Stage Ceramic Ultrafiltration Process. Food Bioprod. Process. 2016, 98, 142–150. DOI: 10.1016/j.fbp.2016.01.001.
  • Francisco Luiz, G. Concentration by Membrane Separation Processes of a Medicinal Product Obtained from Pineapple Pulp. Braz. Arch. Biol. Technol. 2009, 52, 457. DOI: 10.1590/S1516-89132009000200024.
  • Soni, K.; Madamwar, D. Reversed Micellar Extraction of an Extracellular Acid Phosphatase from Fermentation Broth. Process Biochem. 2000, 36, 311–315. DOI: 10.1016/S0032-9592(00)00212-0.
  • Nishiki, T.; Nakamura, K.; Kato, D. Forward and Backward Extraction Rates of Amino Acid in Reversed Micellar Extraction. Biochem. Eng. J. 2000, 4, 189–195. DOI: 10.1016/S1369-703X(99)00048-0.
  • Savelli, G.; Spreti, N.; Di Profio, P. Enzyme Activity and Stability Control by Amphiphilic Self-Organizing Systems in Aqueous Solutions. Curr. Opin. Colloid Interface Sci. 2000, 5, 111–117. DOI: 10.1016/S1359-0294(00)00043-1.
  • Nadzirah, K. Z.; Zainal, S.; Noriham, A.; Normah, I. Efficacy of Selected Purification Techniques for Bromelain. Int. Food Res. J. 2013, 20, 43–46.
  • Hebbar, H. U.; Hemavathi, A. B.; Sumana, B.; Raghavarao, K. S. M. S. Reverse Micellar Extraction of Bromelain from Pineapple (Ananas comosus L. Merryl) Waste: Scale-up, Reverse Micelles Characterization and Mass Transfer Studies. Sep. Sci. Technol. 2011, 46, 1656–1664. DOI: 10.1080/01496395.2011.572110.
  • Hemavathi, A. B.; Hebbar, H. U.; Raghavarao, K. S. Reverse Micellar Extraction of Bromelain from Ananas comosus L. J. Chem. Technol. Biotechnol. 2007, 82, 985–992. DOI: 10.1002/jctb.1769.
  • Hebbar, H. U.; Sumana, B.; Raghavarao, K. Use of Reverse Micellar Systems for the Extraction and Purification of Bromelain from Pineapple Wastes. Bioresour. Technol. 2008, 99, 4896–4902. DOI: 10.1016/j.biortech.2007.09.038.
  • Kumar, S.; Hemavathi, A. B.; Umesh Hebbar, H. Affinity Based Reverse Micellar Extraction and Purification of Bromelain from Pineapple (Ananas comosus L. Merryl) Waste. Process Biochem. 2011, 46, 1216–1220. DOI: 10.1016/j.procbio.2011.02.008.
  • Yin, L.; Sun, C. K.; Han, X.; Xu, L.; Xu, Y.; Qi, Y.; Peng, J. Preparative Purification of Bromelain (EC 3.4.22.33) from Pineapple Fruit by High-Speed Counter-Current Chromatography Using a Reverse-Micelle Solvent System. Food Chem. 2011, 129, 925–932. DOI: 10.1016/j.foodchem.2011.05.048.
  • Guo, J.; Miao, Z.; Wan, J.; Guo, X. Pineapple Peel Bromelain Extraction Using Gemini Surfactant-Based Reverse Micelle – Role of Spacer of Gemini Surfactant. Sep. Purif. Technol. 2018, 190, 156–164. DOI: 10.1016/j.seppur.2017.08.051.
  • Wan, J.; Guo, J.; Miao, Z.; Guo, X. Reverse Micellar Extraction of Bromelain from Pineapple Peel – Effect of Surfactant Structure. Food Chem. 2016, 197, 450–456. DOI: 10.1016/j.foodchem.2015.10.145.
  • Suh, H.; Yang, H.; Lee, H.; Cho, H. Purification and Characterization of Bromelain Isolated from Pineapple. J. Korean Agric. Chem. Soc. 1992, 35, 300.
  • Hernández, M.; Carvajal, C.; Márquez, M.; Báez, R.; Morris, H.; Santos, R. Obtención de Preparados Enzimáticos a Partir de Tallos de Piña (Ananas comosus) con Potencialidades de uso en la Biotecnología y la Medicina. Rev. Cenic. Cienc. Biol. 2005, 36, 1.
  • Devakate, R. V.; Patil, V. V.; Waje, S. S.; Thorat, B. N. Purification and Drying of Bromelain. Sep. Purif. Technol. 2009, 64, 259–264. DOI: 10.1016/0378-8741(88)90127-4.
  • Gautam, S. S.; Mishra, S. K.; Dash, V.; Goyal, A. K.; Rath, G. Comparative Study of Extraction, Purification and Estimation of Bromelain from Stem and Fruit of Pineapple Plant. Thai J. Pharm. Sci. 2010, 34, 67–76.
  • Colletti, A.; Li, S.; Marengo, M.; Adinolfi, S.; Cravotto, G. Recent Advances and Insights into Bromelain Processing, Pharmacokinetics and Therapeutic Uses. Appl. Sci. 2021, 11, 8428. DOI: 10.3390/app11188428.
  • Bobb, D. Isolation of Stem Bromelain by Affinity Chromatography and Its Partial Characterization by Gel Electrophoresis. Prep. Biochem. 1972, 2, 347–354. DOI: 10.1080/00327487208065671.
  • Rowan, A. D.; Buttle, D. J.; Barrett, A. J. The Cysteine Proteinases of the Pineapple Plant. Biochem. J. 1990, 266, 869–875.
  • Muntari, B.; Mohd Salleh, H.; Amid, A.; Mel, M.; Jami, M. S. Recovery of Recombinant Bromelain from Escherichia coli BL21-AI. Afr. J. Biotechnol. 2011, 10, 18829. DOI: 10.5897/AJB11.2761.
  • Eric, R. S.; Steven, M. S.; Anurag, S. LC-MS/MS Identification of a Bromelain Peptide Biomarker from Ananas comosus Merr. Evid. Based Complement. Altern. Med. 2012, 2012, 548486. DOI: 10.1155/2012/548486.
  • Juan, L.; Jinfeng, X.; Jian, P.; Mei, G.; Kai, Z. Identification of the Main Allergenic Proteins in High Hydrostatic Pressure Pineapple Juice and Assessing the Influence of Pressure on Their Allergenicity. Int. J. Food Prop. 2015, 18, 2134–2144. DOI: 10.1080/10942912.2014.966386.
  • Larocca, M.; Rossano, R.; Santamaria, M.; Riccio, P. Analysis of Pineapple [Ananas comosus (L.) Merr.] Fruit Proteinases by 2-D Zymography and Direct Identification of the Major Zymographic Spots by Mass Spectrometry. Food Chem. 2010, 123, 1334–1342. DOI: 10.1016/j.foodchem.2010.06.016.
  • Maher, H. M.; Almomen, A.; Alzoman, N. Z.; Shehata, S. M.; Alanazi, A. A. Development and Validation of UPLC–MS/MS Method for the Simultaneous Quantification of Anaplastic Lymphoma Kinase Inhibitors, Alectinib, Ceritinib, and Crizotinib in Wistar Rat Plasma with Application to Bromelain-Induced Pharmacokinetic Interaction. J. Pharm. Biomed. Anal. 2021, 204, 114276. DOI: 10.1016/j.jpba.2021.114276.
  • Rawat, K. A.; Singhal, R. K.; Kailasa, S. K. Colorimetric and Fluorescence “Turn-on” Methods for the Sensitive Detection of Bromelain Using Carbon Dots Functionalized Gold Nanoparticles as a Dual Probe. RSC Adv. 2016, 6, 32025–32036. DOI: 10.1039/C6RA01575A.
  • Li, X.; Yang, Z.; Bai, Y. Fluorescence Spectroscopic Analysis of the Interaction of Papain and Bromelain with L-Ascorbic Acid, α-Tocopherol, β-Carotene and Astaxanthin. Int. J. Biol. Macromol. 2018, 107, 144–156. DOI: 10.1016/j.ijbiomac.2017.08.150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.