279
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bioactive mushroom polysaccharides: The structure, characterization and biological functions

& ORCID Icon

References

  • He, X.; Wang, X.; Fang, J.; Chang, Y.; Ning, N.; Guo, H.; Huang, L.; Huang, X.; Zhao, Z. Polysaccharides in Grifola frondosa Mushroom and Their Health Promoting Properties: A Review. Int. J. Biol. Macromol. 2017, 101, 910–921. DOI: 10.1016/j.ijbiomac.2017.03.177.
  • Xu, X.; Yan, H.; Tang, J.; Chen, J.; Zhang, X. Polysaccharides in Lentinus edodes : Isolation, Structure, Immunomodulating Activity and Future Prospective. Crit. Rev. Food Sci. Nutr. 2014, 54, 474–487. DOI: 10.1080/10408398.2011.587616.
  • Rathore, H.; Prasad, S.; Sharma, S. Mushroom Nutraceuticals for Improved Nutrition and Better Human Health: A Review. PharmaNutrition 2017, 5, 35–46. DOI: 10.1016/j.phanu.2017.02.001.
  • Dore, C.; Alves, M.; Santos, M.; de Souza, L.; Baseia, I.; Leite, E. Antioxidant and Anti-Inflammatory Properties of an Extract Rich in Polysaccharides of the Mushroom Polyporus dermoporus. Antioxidants 2014, 3, 730–744. DOI: 10.3390/antiox3040730.
  • Liu, C.; Chen, J.; Chen, L.; Huang, X.; Cheung, P. C. K. Immunomodulatory Activity of Polysaccharide–Protein Complex from the Mushroom Sclerotia of Polyporus Rhinocerus in Murine Macrophages. J. Agric. Food Chem. 2016, 64, 3206–3214. DOI: 10.1021/acs.jafc.6b00932.
  • Liu, K.; Wang, J.-L.; Zhao, L.; Wang, Q. Anticancer and Antimicrobial Activities and Chemical Composition of the Birch Mazegill Mushroom Lenzites betulina (Higher Basidiomycetes). Int. J. Med. Mushrooms 2014, 16, 327–337. DOI: 10.1615/IntJMedMushrooms.v16.i4.30.
  • Ouellette, R. J.; Rawn, J. D. Carbohydrates. In Principles of Organic Chemistry. Elsevier: Amsterdam, 2015; pp 343–370. DOI: 10.1016/B978-0-12-802444-7.00013-6.
  • Varki, A.; Sharon, N. Historical Background and Overview. In Essentials of Glycobiology, 2nd ed.; Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., Etzler, M. E., Eds. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 2015; Chapter 1. DOI: 10.1101/glycobiology.3e.001.
  • Singdevsachan, S. K.; Auroshree, P.; Mishra, J.; Baliyarsingh, B.; Tayung, K.; Thatoi, H. Mushroom Polysaccharides as Potential Prebiotics with Their Antitumor and Immunomodulating Properties: A Review. Bioact. Carbohydrates Diet. Fibre 2016, 7, 1–14. DOI: 10.1016/j.bcdf.2015.11.001.
  • Giavasis, I. Bioactive Fungal Polysaccharides as Potential Functional Ingredients in Food and Nutraceuticals. Curr. Opin. Biotechnol. 2014, 26, 162–173. DOI: 10.1016/j.copbio.2014.01.010.
  • Sofi, S.; Singh, J.; Rafiq, S. β-Glucan and Functionality: A Review. EC. Nutr. 2017, 10, 67–74.
  • Synytsya, A.; Novak, M. Structural Analysis of Glucans. Ann. Transl. Med. 2014, 2, 17. DOI: 10.3978/j.issn.2305-5839.2014.02.07.
  • Thitipraphunkul, K.; Uttapap, D.; Piyachomkwan, K.; Takeda, Y. A Comparative Study of Edible Canna (Canna edulis) Starch from Different Cultivars. Part II. Molecular Structure of Amylose and Amylopectin. Carbohydr. Polym. 2003, 54, 489–498. DOI: 10.1016/j.carbpol.2003.08.003.
  • McLntyre, D. D.; Calgary, H. J. V. Structural Studies of Pullulan by Nuclear Magnetic Resonance Spectroscopy. Starch - Stärke 1993, 45, 406–410. DOI: 10.1002/star.19930451108.
  • Singh, R. S.; Saini, G. K.; Kennedy, J. F. Pullulan: Microbial Sources, Production and Applications. Carbohydr. Polym. 2008, 73, 515–531. DOI: 10.1016/j.carbpol.2008.01.003.
  • Jarvis, M. C. Plant Cell Walls: Supramolecular Assemblies. Food Hydrocoll. 2011, 25, 257–262. DOI: 10.1016/j.foodhyd.2009.09.010.
  • Lazaridou, A.; Biliaderis, C. G. Molecular Aspects of Cereal β-Glucan Functionality: Physical Properties, Technological Applications and Physiological Effects. J. Cereal Sci. 2007, 46, 101–118. DOI: 10.1016/j.jcs.2007.05.003.
  • W, S. Medicinal Mushrooms as a Source of Antitumor and Immunomodulating Polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. DOI: 10.1007/s00253-002-1076-7.
  • McCleary, B. V.; Draga, A. Measurement of β-Glucan in Mushrooms and Mycelial Products. J. AOAC Int. 2016, 99, 364–373. DOI: 10.5740/jaoacint.15-0289.
  • Hattori, T. S.; Komatsu, N.; Shichijo, S.; Itoh, K. Protein-Bound Polysaccharide K Induced Apoptosis of the Human Burkitt Lymphoma Cell Line, Namalwa. Biomed. Pharmacother. 2004, 58, 226–230. DOI: 10.1016/j.biopha.2004.02.004.
  • Daba, A. S.; Ezeronye, O. U. Anti-Cancer Effect of Polysaccharides Isolated from Higher Basidiomycetes Mushrooms. African J. Biotechnol. 2003, 2, 672–678. DOI: 10.5897/AJB2003.000-1123.
  • Ina, K.; Kataoka, T.; Ando, T. The Use of Lentinan for Treating Gastric Cancer. Anticancer Agents Med. Chem. 2013, 13, 681–688. DOI: 10.2174/1871520611313050002.
  • Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016, 5, 80. DOI: 10.3390/foods5040080.
  • Zhang, Y.; Kong, H.; Fang, Y.; Nishinari, K.; Phillips, G. O. Schizophyllan: A Review on Its Sructure, Properties, Bioactivities and Recent Developments. Bioact. Carbohydr. Diet Fibre 2013, 1, 53–71. DOI: 10.1016/j.bcdf.2013.01.002.
  • Choong, Y.-K.; Ellan, K.; Chen, X.-D.; Azuar Mohamad, S. Extraction and Fractionation of Polysaccharides from a Selected Mushroom Species, Ganoderma lucidum: A Critical Review. In Fractionation. IntechOpen: London, 2019. DOI: 10.5772/intechopen.78047.
  • Zhang, Y.; Xu, X.; Zhang, L. Gel Formation and Low-Temperature Intramolecular Conformation Transition of a Triple-Helical Polysaccharide Lentinan in Water. Biopolymers 2008, 89, 852–861. DOI: 10.1002/bip.21025.
  • Sasaki, T.; Takasuka, N. Further Study of the Structure of Lentinan, an Anti-Tumor Polysaccharide from Lentinus edodes. Carbohydr. Res. 1976, 47, 99–104. DOI: 10.1016/S0008-6215(00)83552-1.
  • Zhang, Y.; Li, S.; Wang, X.; Zhang, L.; Cheung, P. C. K. Advances in Lentinan: Isolation, Structure, Chain Conformation and Bioactivities. Food Hydrocoll. 2011, 25, 196–206. DOI: 10.1016/j.foodhyd.2010.02.001.
  • Saleh, M. H.; Rashedi, I.; Keating, A. Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Front. Immunol. 2017, 6, 8. DOI: 10.3389/fimmu.2017.01087.
  • Cui, J.; Chisti, Y. Polysaccharopeptides of Coriolus versicolor: Physiological Activity, Uses, and Production. Biotechnol. Adv. 2003, 21, 109–122. DOI: 10.1016/S0734-9750(03)00002-8.
  • Chang, Y.; Zhang, M.; Jiang, Y.; Liu, Y.; Luo, H.; Hao, C.; Zeng, P.; Zhang, L. Preclinical and Clinical Studies of Coriolus versicolor Polysaccharopeptide as an Immunotherapeutic in China. Discov. Med. 2017, 23, 207–219.
  • Awadasseid, A.; Hou, J.; Gamallat, Y.; Xueqi, S.; Eugene, K. D.; Musa Hago, A.; Bamba, D.; Meyiah, A.; Gift, C.; Xin, Y.; et al. Purification, Characterization, and Antitumor Activity of a Novel Glucan from the Fruiting Bodies of Coriolus versicolor. PLoS One 2017, 12, e0171270. DOI: 10.1371/journal.pone.0171270.
  • Tsukagoshi, S.; Hashimoto, Y.; Fujii, G.; Kobayashi, H.; Nomoto, K.; Orita, K. Krestin (PSK). Cancer Treat. Rev. 1984, 11, 131–155. DOI: 10.1016/0305-7372(84)90005-7.
  • Barros, A.; Bell, V.; Ferrão, J.; Calabrese, V.; Fernandes, T. Mushroom Biomass: Some Clinical Implications of β-Glucans and Enzymes. Curr. Res. Nutr. Food Sci. J. 2016, 4, 37–47. DOI: 10.12944/CRNFSJ.4.Special-Issue-October.06.
  • Zhang, L.; Guang, L.-C.; Liang, H.; Reddy, N. Bioactive Mushroom Polysaccharides: Immunoceuticals to Anticancer Agents. J. Nutraceuticals Food Sci. 2017, 2, 6.
  • Zhang, H.; Birch, J.; Pei, J.; Mohamed, A. I. A.; Yang, H.; Dias, G. Identification of Six Phytochemical Compounds from Asparagus Officinalis L. Root Cultivars from New Zealand and China Using UAE-SPE-UPLC-MS/MS: Effects of Extracts on H2O2-Induced Oxidative Stress. Nutrients 2019, 11, 107. DOI: 10.3390/nu11010107.
  • Yang, H.; Yin, T.; Zhang, S. Isolation, Purification, and Characterization of Polysaccharides from Wide Morchella esculenta (L.) Pers. Int. J. Food Prop. 2015, 18, 1385–1390. DOI: 10.1080/10942912.2014.915849.
  • Sermwittayawong, D.; Patninan, K.; Phothiphiphit, S.; Boonyarattanakalin, S.; Sermwittayawong, N.; Hutadilok-Towatana, N. Purification, Characterization, and Biological Activities of Purified Polysaccharides Extracted from the Gray Oyster Mushroom [Pleurotus sajor-caju (Fr.) Sing.]. J. Food Biochem. 2018, 42, e12606. DOI: 10.1111/jfbc.12606.
  • Li, H. Extraction, Purification, Characterization and Antioxidant Activities of Polysaccharides from Ramaria botrytis (Pers.) Ricken. Chem. Cent. J. 2017, 11, 24. DOI: 10.1186/s13065-017-0252-x.
  • Yelithao, K.; Surayot, U.; Lee, C.; Palanisamy, S.; Prabhu, N. M.; Lee, J.; You, S. Studies on Structural Properties and Immune-Enhancing Activities of Glycomannans from Schizophyllum commune. Carbohydr. Polym. 2019, 218, 37–45. DOI: 10.1016/j.carbpol.2019.04.057.
  • Ge, Y.; Qiu, H.; Zheng, J. Physicochemical Characteristics and Anti-Hyperlipidemic Effect of Polysaccharide from BaChu Mushroom (Helvella leucopus). Food Chem. X 2022, 15, 100443. DOI: 10.1016/j.fochx.2022.100443.
  • Badshah, S. L.; Riaz, A.; Muhammad, A.; Tel Çayan, G.; Çayan, F.; Emin Duru, M.; Ahmad, N.; Emwas, A. H.; Jaremko, M. Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta. Molecules 2021, 26, 1459. DOI: 10.3390/molecules26051459.
  • Niu, L.; Wu, Y.; Liu, H.; Wang, Q.; Li, M.; Jia, Q. The Structural Characterization of a Novel Water‐Soluble Polysaccharide from Edible Mushroom Leucopaxillus giganteus and Its Antitumor Activity on H22 Tumor‐Bearing Mice. Chem. Biodivers. 2021, 18, 27. DOI: 10.1002/cbdv.202001010.
  • Wang, Y.-X.; Zhang, T.; Xin, Y.; Huang, X.-J.; Yin, J.-Y.; Nie, S.-P. Comprehensive Evaluation of Alkali-Extracted Polysaccharides from Agrocybe cylindracea: Comparison on Structural Characterization. Carbohydr. Polym. 2021, 255, 117502. DOI: 10.1016/j.carbpol.2020.117502.
  • Li, J.; Cai, C.; Zheng, M.; Hao, J.; Wang, Y.; Hu, M.; Fan, L.; Yu, G. Alkaline Extraction, Structural Characterization, and Bioactivities of (1→6)-β-d-Glucan from Lentinus edodes. Molecules 2019, 24, 1610. DOI: 10.3390/molecules24081610.
  • Yang, S.; Yan, J.; Yang, L.; Meng, Y.; Wang, N.; He, C.; Fan, Y.; Zhou, Y. Alkali-Soluble Polysaccharides from Mushroom Fruiting Bodies Improve Insulin Resistance. Int. J. Biol. Macromol. 2019, 126, 466–474. DOI: 10.1016/j.ijbiomac.2018.12.251.
  • Siu, K.-C.; Xu, L.; Chen, X.; Wu, J.-Y. Molecular Properties and Antioxidant Activities of Polysaccharides Isolated from Alkaline Extract of Wild Armillaria ostoyae Mushrooms. Carbohydr. Polym. 2016, 137, 739–746. DOI: 10.1016/j.carbpol.2015.05.061.
  • Chen, J.-N.; Wang, Y.-T.; Wu, J. S.-B. A Glycoprotein Extracted from Golden Oyster Mushroom Pleurotus citrinopileatus Exhibiting Growth Inhibitory Effect against U937 Leukemia Cells. J. Agric. Food Chem. 2009, 57, 6706–6711. DOI: 10.1021/jf901284s.
  • Guo, Q.; Ai, L.; Cui, S. Methodology for Structural Analysis of Polysaccharides; Springer: Cham, 2018. DOI: 10.1007/978-3-319-96370-9.
  • Ma, T.; Sun, X.; Tian, C.; Luo, J.; Zheng, C.; Zhan, J. Polysaccharide Extraction from Sphallerocarpus gracilis Roots by Response Surface Methodology. Int. J. Biol. Macromol. 2016, 88, 162–170. DOI: 10.1016/j.ijbiomac.2016.03.058.
  • Wang, N.; Zhang, Y.; Wang, X.; Huang, X.; Fei, Y.; Yu, Y.; Shou, D. Antioxidant Property of Water-Soluble Polysaccharides from Poria cocos Wolf Using Different Extraction Methods. Int. J. Biol. Macromol. 2016, 83, 103–110. DOI: 10.1016/j.ijbiomac.2015.11.032.
  • Shi, L. Bioactivities, Isolation and Purification Methods of Polysaccharides from Natural Products: A Review. Int. J. Biol. Macromol. 2016, 92, 37–48. DOI: 10.1016/j.ijbiomac.2016.06.100.
  • Chen, Y.; Yao, F.; Ming, K.; Wang, D.; Hu, Y.; Liu, J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016, 21, 1705. DOI: 10.3390/molecules21121705.
  • Li, S.; Wu, D.; Lv, G.; Zhao, J. Carbohydrates Analysis in Herbal Glycomics. TrAC Trends Anal. Chem. 2013, 52, 1155–1169. DOI: 10.1016/j.trac.2013.05.020.
  • Thakur, A.; Rana, M.; Lakhanpal, T. N.; Ahmad, A.; Khan, M. I. Purification and Characterization of Lectin from Fruiting Body of Ganoderma lucidum. Biochim. Biophys. Acta 2007, 1770, 1404–1412. DOI: 10.1016/j.bbagen.2007.05.009.
  • Jing, Y.; Gao, Y.; Wang, W.; Cheng, Y.; Lu, P.; Ma, C.; Zhang, Y. Optimization of the Extraction of Polysaccharides from Tobacco Waste and Their Biological Activities. Int. J. Biol. Macromol. 2016, 91, 188–197. DOI: 10.1016/j.ijbiomac.2016.05.069.
  • Zou, Y.; Du, F.; Hu, Q.; Wang, H. The Structural Characterization of a Polysaccharide Exhibiting Antitumor Effect from Pholiota adiposa Mycelia. Sci. Rep. 2019, 9, 1724. DOI: 10.1038/s41598-018-38251-6.
  • Savelkoul, H. F. J.; Chanput, W.; Wichers, H. J. Immunomodulatory Effects of Mushroom β-Glucans. In Diet, Immunity and Inflammation. Elsevier: Amsterdam, 2013; pp 416–434. DOI: 10.1533/9780857095749.3.416.
  • Wang, T.-L.; Li, Y.-C.; Lin, C.-S.; Zou, Y.-P. Comprehensive Analysis of Natural Polysaccharides from TCMs: A Generic Approach Based on UPLC-MS/MS. Carbohydr. Polym. 2022, 277, 118877. DOI: 10.1016/j.carbpol.2021.118877.
  • Guo, N.; Bai, Z.; Jia, W.; Sun, J.; Wang, W.; Chen, S.; Wang, H. Quantitative Analysis of Polysaccharide Composition in Polyporus Umbellatus by HPLC–ESI–TOF–MS. Molecules 2019, 24, 2526. DOI: 10.3390/molecules24142526.
  • Zhao, H.; Lai, C.-J.-S.; Yu, Y.; Wang, Y.-N.; Zhao, Y.-J.; Ma, F.; Hu, M.; Guo, J.; Wang, X.; Guo, L.; et al. Acidic Hydrolysate Fingerprints Based on HILIC-ELSD/MS Combined with Multivariate Analysis for Investigating the Quality of Ganoderma lucidum Polysaccharides. Int. J. Biol. Macromol. 2020, 163, 476–484. DOI: 10.1016/j.ijbiomac.2020.06.206.
  • López-Legarda, X.; Rostro-Alanis, M.; Parra-Saldivar, R.; Villa-Pulgarín, J. A.; Segura-Sánchez, F. Submerged Cultivation, Characterization and In Vitro Antitumor Activity of Polysaccharides from Schizophyllum radiatum. Int. J. Biol. Macromol. 2021, 186, 919–932. DOI: 10.1016/j.ijbiomac.2021.07.084.
  • Nataraj, A.; Govindan, S.; Ramani, P.; Subbaiah, K. A.; Sathianarayanan, S.; Venkidasamy, B.; Thiruvengadam, M.; Rebezov, M.; Shariati, M. A.; Lorenzo, J. M.; et al. Antioxidant, Anti-Tumour, and Anticoagulant Activities of Polysaccharide from Calocybe indica (APK2). Antioxidants 2022, 11, 1694. DOI: 10.3390/antiox11091694.
  • Mehmood, S.; Zhou, L.-Y.; Wang, X.-F.; Cheng, X.-D.; Meng, F.-J.; Wang, Y.; Lu, Y.; Chen, Y. Structural Elucidation and Antioxidant Activity of a Novel Heteroglycan from Tricholoma lobayense. J. Carbohydr. Chem. 2019, 38, 192–211. DOI: 10.1080/07328303.2019.1582659.
  • Liu, Y.; Zhou, Y.; Liu, M.; Wang, Q.; Li, Y. Extraction Optimization, Characterization, Antioxidant and Immunomodulatory Activities of a Novel Polysaccharide from the Wild Mushroom Paxillus involutus. Int. J. Biol. Macromol. 2018, 112, 326–332. DOI: 10.1016/j.ijbiomac.2018.01.132.
  • da Silva Milhorini, S.; Simas, F. F.; Smiderle, F. R.; Inara de Jesus, L.; Rosado, F. R.; Longoria, E. L.; Iacomini, M. β-Glucans from the Giant Mushroom Macrocybe Titans: Chemical Characterization and Rheological Properties. Food Hydrocoll. 2022, 125, 107392. DOI: 10.1016/j.foodhyd.2021.107392.
  • Bleha, R.; Třešnáková, L.; Sushytskyi, L.; Capek, P.; Čopíková, J.; Klouček, P.; Jablonský, I.; Synytsya, A. Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure. Polymers 2022, 14, 255. DOI: 10.3390/polym14020255.
  • Li, Y.-M.; Zhong, R.; Chen, J.; Luo, Z.-G. Structural Characterization, Anticancer, Hypoglycemia and Immune Activities of Polysaccharides from Russula virescens. Int. J. Biol. Macromol. 2021, 184, 380–392. DOI: 10.1016/j.ijbiomac.2021.06.026.
  • Deng, Y.; Zhao, J.; Li, S.-P. Quantitative Estimation of Enzymatic Released Specific Oligosaccharides from Hericium erinaceus Polysaccharides Using CE-LIF. J. Pharm. Anal. Available online 24 November 2022. DOI: 10.1016/j.jpha.2022.11.004.
  • Bai, X.; Bai, X. Antioxidant Activity of a Polysaccharide from Dictyophora indusiata Volva and MECC Analysis of Its Monosaccharide Composition. J. Indian Chem. Soc. 2021, 98, 100146. DOI: 10.1016/j.jics.2021.100146.
  • Liu, D.; Tang, W.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. Monosaccharide Composition Analysis of Polysaccharides from Natural Sources: Hydrolysis Condition and Detection Method Development. Food Hydrocoll. 2021, 116, 106641. DOI: 10.1016/j.foodhyd.2021.106641.
  • Tsai, P.-F.; Ma, C.-Y.; Wu, J. S.-B. A Novel Glycoprotein from Mushroom Hypsizygus marmoreus (Peck) Bigelow with Growth Inhibitory Effect against Human Leukaemic U937 Cells. Food Chem. 2013, 141, 1252–1258. DOI: 10.1016/j.foodchem.2013.04.024.
  • Dai, J.; Wu, Y.; Chen, S.; Zhu, S.; Yin, H.; Wang, M.; Tang, J. Sugar Compositional Determination of Polysaccharides from Dunaliella salina by Modified RP-HPLC Method of Precolumn Derivatization with 1-Phenyl-3-Methyl-5-Pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. DOI: 10.1016/j.carbpol.2010.05.029.
  • Chen, G.; Chen, X.; Yang, B.; Yu, Q.; Wei, X.; Ding, Y.; Kan, J. New Insight into Bamboo Shoot (Chimonobambusa quadrangularis) Polysaccharides: Impact of Extraction Processes on Its Prebiotic Activity. Food Hydrocoll. 2019, 95, 367–377. DOI: 10.1016/j.foodhyd.2019.04.046.
  • Jandera, P.; Janás, P. Recent Advances in Stationary Phases and Understanding of Retention in Hydrophilic Interaction Chromatography. A Review. Anal. Chim. Acta 2017, 967, 12–32. DOI: 10.1016/j.aca.2017.01.060.
  • Schulze, C.; Strehle, A.; Merdivan, S.; Mundt, S. Carbohydrates in Microalgae: Comparative Determination by TLC, LC-MS without Derivatization, and the Photometric Thymol-Sulfuric Acid Method. Algal. Res. 2017, 25, 372–380. DOI: 10.1016/j.algal.2017.05.001.
  • Kurzyna-Szklarek, M.; Cybulska, J.; Zdunek, A. Analysis of the Chemical Composition of Natural Carbohydrates – An Overview of Methods. Food Chem. 2022, 394, 133466. DOI: 10.1016/j.foodchem.2022.133466.
  • Bai, W.; Fang, X.; Zhao, W.; Huang, S.; Zhang, H.; Qian, M. Determination of Oligosaccharides and Monosaccharides in Hakka Rice Wine by Precolumn Derivation High-Performance Liquid Chromatography. J. Food Drug. Anal. 2015, 23, 645–651. DOI: 10.1016/j.jfda.2015.04.011.
  • Nishimura, A.; Yoshioka, A.; Kariya, K.; Ube, N.; Ueno, K.; Tebayashi, S.-I.; Osaki-Oka, K.; Ishihara, A. Sugars in an Aqueous Extract of the Spent Substrate of the Mushroom Hypsizygus marmoreus Induce Defense Responses in Rice. Biosci. Biotechnol. Biochem. 2021, 85, 743–755. DOI: 10.1093/bbb/zbaa122.
  • Sławińska, A.; Jabłońska-Ryś, E.; Stachniuk, A. High-Performance Liquid Chromatography Determination of Free Sugars and Mannitol in Mushrooms Using Corona Charged Aerosol Detection. Food Anal. Methods 2021, 14, 209–216. DOI: 10.1007/s12161-020-01863-8.
  • Raessler, M. Sample Preparation and Current Applications of Liquid Chromatography for the Determination of Non-Structural Carbohydrates in Plants. TrAC Trends Anal. Chem. 2011, 30, 1833–1843. DOI: 10.1016/j.trac.2011.06.013.
  • Hu, X.; Fang, C.; Lu, L.; Hu, Z.; Shao, Y.; Zhu, Z. Determination of Soluble Sugar Profile in Rice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1058, 19–23. DOI: 10.1016/j.jchromb.2017.05.001.
  • Kim, I.; Jalaludin J. Comparison of Ultraviolet and Refractive Index Detections in the HPLC Analysis of Sugars. Food Chem. 2021, 365, 130514. DOI: 10.1016/j.foodchem.2021.130514.
  • Wang, X.; Zhang, L.; Wu, J.; Xu, W.; Wang, X.; Lü, X. Improvement of Simultaneous Determination of Neutral Monosaccharides and Uronic Acids by Gas Chromatography. Food Chem. 2017, 220, 198–207. DOI: 10.1016/j.foodchem.2016.10.008.
  • Yan, X. Carbohydrate Analysis by High-Performance Liquid Chromatography (HPLC) with Evaporative Light-Scattering Detection (ELSD). In Carbohydrate Analysis by Modern Liquid Phase Separation Techniques. Elsevier: Amsterdam, 2021; pp 631–644 DOI: 10.1016/B978-0-12-821447-3.00013-5.
  • Magnusson, L.-E.; Risley, D. S.; Koropchak, J. A. Aerosol-Based Detectors for Liquid Chromatography. J. Chromatogr. A 2015, 1421, 68–81. DOI: 10.1016/j.chroma.2015.07.045.
  • Yang, Q.; Wang, S.; Xie, Y.; Sun, J.; Wang, J. HPLC Analysis of Ganoderma lucidum Polysaccharides and Its Effect on Antioxidant Enzymes Activity and Bax, Bcl-2 Expression. Int. J. Biol. Macromol. 2010, 46, 167–172. DOI: 10.1016/j.ijbiomac.2009.11.002.
  • Ullah, M. I.; Akhtar, M.; Iqbal, Z.; Muhammad, F. ImmunotherapeuticAactivities of Mushroom Derived Polysaccharides in Chicken. Int. J. Agric. Biol. 2014, 16, 269–276.
  • Willför, S.; Pranovich, A.; Tamminen, T.; Puls, J.; Laine, C.; Suurnäkki, A.; Saake, B.; Uotila, K.; Simolin, H.; Hemming, J.; et al. Carbohydrate Analysis of Plant Materials with Uronic Acid-Containing Polysaccharides–A Comparison between Different Hydrolysis and Subsequent Chromatographic Analytical Techniques. Ind. Crops Prod. 2009, 29, 571–580. DOI: 10.1016/j.indcrop.2008.11.003.
  • Cao, L.; Wu, J.; Li, X.; Zheng, L.; Wu, M.; Liu, P.; Huang, Q. Validated HPAEC-PAD Method for the Determination of Fully Deacetylated Chitooligosaccharides. Int. J. Mol. Sci. 2016, 17, 1699. DOI: 10.3390/ijms17101699.
  • Lorenz, D.; Erasmy, N.; Akil, Y.; Saake, B. A New Method for the Quantification of Monosaccharides, Uronic Acids and Oligosaccharides in Partially Hydrolyzed Xylans by HPAEC-UV/VIS. Carbohydr. Polym. 2016, 140, 181–187. DOI: 10.1016/j.carbpol.2015.12.027.
  • Butré, C. I.; Delobel, A. HPLC- and CE-Based Methods for the Characterization of Therapeutic Glycoproteins. In Carbohydrate Analysis by Modern Liquid Phase Separation Techniques. Elsevier: Amsterdam, 2021; pp 761–814. DOI: 10.1016/B978-0-12-821447-3.00014-7.
  • Corradini, C.; Cavazza, A.; Bignardi, C. High-Performance Anion-Exchange Chromatography Coupled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohydrates of Food Interest: Principles and Applications. Int. J. Carbohydr. Chem. 2012, 2012, 1–13. DOI: 10.1155/2012/487564.
  • Fernando, I. P. S.; Sanjeewa, K. K. A.; Samarakoon, K. W.; Lee, W. W.; Kim, H.-S.; Kim, E.-A.; Gunasekara, U. K. D. S. S.; Abeytunga, D. T. U.; Nanayakkara, C.; de Silvae E. D.; et al. FTIR Characterization and Antioxidant Activity of Water Soluble Crude Polysaccharides of Sri Lankan Marine Algae. Algae 2017, 32, 75–86. DOI: 10.4490/algae.2017.32.12.1.
  • Megías-Pérez, R.; Ruiz-Matute, A. I.; Corno, M.; Kuhnert, N. Analysis of Minor Low Molecular Weight Carbohydrates in Cocoa Beans by Chromatographic Techniques Coupled to Mass Spectrometry. J. Chromatogr. A 2019, 1584, 135–143. DOI: 10.1016/j.chroma.2018.11.033.
  • Sanz, M. L.; Martínez-Castro, I. Recent Developments in Sample Preparation for Chromatographic Analysis of Carbohydrates. J. Chromatogr. A 2007, 1153, 74–89. DOI: 10.1016/j.chroma.2007.01.028.
  • Preethi, S.; Mary, S. A. Screening of Natural Polysaccharides Extracted from the Fruits of Pithecellobium dulce as a Pharmaceutical Adjuvant. Int. J. Biol. Macromol. 2016, 92, 347–356. DOI: 10.1016/j.ijbiomac.2016.07.036.
  • Zweckmair, T.; Schiehser, S.; Rosenau, T.; Potthast, A. Improved Quantification of Monosaccharides in Complex Lignocellulosic Biomass Matrices: A Gas Chromatography-Mass Spectrometry Based Approach. Carbohydr. Res. 2017, 446–447, 7–12. DOI: 10.1016/j.carres.2017.04.011.
  • Harvey, D. J. Derivatization of Carbohydrates for Analysis by Chromatography; Electrophoresis and Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1196–1225. DOI: 10.1016/j.jchromb.2010.11.010.
  • Lluveras-Tenorio, A.; Mazurek, J.; Restivo, A.; Colombini, M. P.; Bonaduce, I. Analysis of Plant Gums and Saccharide Materials in Paint Samples: Comparison of GC-MS Analytical Procedures and Databases. Chem. Cent. J. 2012, 6, 115. DOI: 10.1186/1752-153X-6-115.
  • Becker, M.; Zweckmair, T.; Forneck, A.; Rosenau, T.; Potthast, A.; Liebner, F. Evaluation of Different Derivatisation Approaches for Gas Chromatographic–Mass Spectrometric Analysis of Carbohydrates in Complex Matrices of Biological and Synthetic Origin. J. Chromatogr. A 2013, 1281, 115–126. DOI: 10.1016/j.chroma.2013.01.053.
  • Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, Á.; Carrillo, J. D.; Ayestarán, B. Quantitative Determination of Wine Polysaccharides by Gas Chromatography–Mass Spectrometry (GC–MS) and Size Exclusion Chromatography (SEC). Food Chem. 2012, 131, 367–374. DOI: 10.1016/j.foodchem.2011.08.049.
  • Zhang, X.; Cai, Z.; Mao, H.; Hu, P.; Li, X. Isolation and Structure Elucidation of Polysaccharides from Fruiting Bodies of Mushroom Coriolus versicolor and Evaluation of Their Immunomodulatory Effects. Int. J. Biol. Macromol. 2021, 166, 1387–1395. DOI: 10.1016/j.ijbiomac.2020.11.018.
  • Zhong, R.-F.; Yang, J.-J.; Geng, J.-H.; Chen, J. Structural Characteristics, Anti-Proliferative and Immunomodulatory Activities of a Purified Polysaccharide from Lactarius volemus Fr. Int. J. Biol. Macromol. 2021, 192, 967–977. DOI: 10.1016/j.ijbiomac.2021.10.049.
  • Sastre, T. J.; Ramautar, R.; de Jong, G. Advances in Capillary Electrophoresis for the Life Sciences. J. Chromatogr. B 2019, 116–136, 1118–1119. DOI: 10.1016/j.jchromb.2019.04.020.
  • Ruiz-Calero, V.; Puignou, L.; Galceran, M. T. Determination of Glycosaminoglycan Monosaccharides by Capillary Electrophoresis Using Laser-Induced Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 791, 193–202. DOI: 10.1016/S1570-0232(03)00214-9.
  • Pauk, V.; Pluháček, T.; Havlíček, V.; Lemr, K. Ultra-High Performance Supercritical Fluid Chromatography-Mass Spectrometry Procedure for Analysis of Monosaccharides from Plant Gum Binders. Anal. Chim. Acta 2017, 989, 112–120. DOI: 10.1016/j.aca.2017.07.036.
  • Schulz, M.; Brugnerotto, P.; Seraglio, S. K. T.; Gonzaga, L. V.; Borges, G. D. S. C.; Costa, A. C. O. Aliphatic Organic Acids and Sugars in Seven Edible Ripening Stages of Juçara Fruit (Euterpe edulis Martius). J. Food Compos. Anal. 2021, 95, 103683. DOI: 10.1016/j.jfca.2020.103683.
  • Mechelke, M.; Herlet, J.; Benz, J. P.; Schwarz, W. H.; Zverlov, V. V.; Liebl, W.; Kornberger, P. HPAEC-PAD for Oligosaccharide Analysis—Novel Insights into Analyte Sensitivity and Response Stability. Anal. Bioanal. Chem. 2017, 409, 7169–7181. DOI: 10.1007/s00216-017-0678-y.
  • Chen, Y.; Zhang, H.; Wang, Y.; Nie, S.; Li, C.; Xie, M. Sulfated Modification of the Polysaccharides from Ganoderma atrum and Their Antioxidant and Immunomodulating Activities. Food Chem. 2015, 186, 231–238. DOI: 10.1016/j.foodchem.2014.10.032.
  • Mohan, K.; Padmanaban, M.; Uthayakumar, V. Isolation, Structural Characterization and Antioxidant Activities of Polysaccharide from Ganoderma lucidum (Higher Basidiomycetes). Am. J. Life Sci. 2015, 3, 168–175.
  • Yu, J.; Ji, H.; Liu, C.; Liu, A. The Structural Characteristics of an Acid-Soluble Polysaccharide from Grifola frondosa and Its Antitumor Effects on H22-Bearing Mice. Int. J. Biol. Macromol. 2020, 158, 1288–1298. DOI: 10.1016/j.ijbiomac.2020.05.054.
  • Santos, J. R.; Viegas, O.; Páscoa, R. N. M. J.; Ferreira, I. M. P. L. V. O.; Rangel, A. O. S. S.; Lopes, J. A. In-Line Monitoring of the Coffee Roasting Process with near Infrared Spectroscopy: Measurement of Sucrose and Colour. Food Chem. 2016, 208, 103–110. DOI: 10.1016/j.foodchem.2016.03.114.
  • Gong, P.; Wang, S.; Liu, M.; Chen, F.; Yang, W.; Chang, X.; Liu, N.; Zhao, Y.; Wang, J.; Chen, X.; et al. Extraction Methods, Chemical Characterizations and Biological Activities of Mushroom Polysaccharides: A Mini-Review. Carbohydr. Res. 2020, 494, 108037. DOI: 10.1016/j.carres.2020.108037.
  • Chen, Y.-T.; Hung, W.-T.; Wang, S.-H.; Fang, J.-M.; Yang, W.-B. Quantitative Analysis of Sugar Ingredients in Beverages and Food Crops by an Effective Method Combining Naphthimidazole Derivatization and 1H-NMR Spectrometry. Funct. Foods Heal. Dis. 2017, 7, 494. DOI: 10.31989/ffhd.v7i7.348.
  • Li, W.; Ruan, C.-J.; Teixeira, D. S. J. A.; Guo, H.; Zhao, C.-E. NMR Metabolomics of Berry Quality in Sea Buckthorn (Hippophae L.). Mol. Breed. 2013, 31, 57–67. DOI: 10.1007/s11032-012-9768-x.
  • Rovio, S.; Simolin, H.; Koljonen, K.; Sirén, H. Determination of Monosaccharide Composition in Plant Fiber Materials by Capillary Zone Electrophoresis. J. Chromatogr. A 2008, 1185, 139–144. DOI: 10.1016/j.chroma.2008.01.031.
  • Maity, G. N.; Maity, P.; Khatua, S.; Acharya, K.; Dalai, S.; Mondal, S. Structural Features and Antioxidant Activity of a New Galactoglucan from Edible Mushroom Pleurotus djamor. Int. J. Biol. Macromol. 2021, 168, 743–749. DOI: 10.1016/j.ijbiomac.2020.11.131.
  • Wang, J.; Chen, S.; Nie, S.; Cui, S. W.; Wang, Q.; Phillips, A. O.; Phillips, G. O.; Xie, M. Structural Characterization and Chain Conformation of Water-Soluble β-Glucan from Wild Cordyceps sinensis. J. Agric. Food Chem. 2019, 67, 12520–12527. DOI: 10.1021/acs.jafc.9b05340.
  • Masuda, Y.; Matsumoto, A.; Toida, T.; Oikawa, T.; Ito, K.; Nanba, H. Characterization and Antitumor Effect of a Novel Polysaccharide from Grifola frondosa. J. Agric. Food Chem. 2009, 57, 10143–10149. DOI: 10.1021/jf9021338.
  • Chen, H.-S.; Tsai, Y.-F.; Lin, S.; Lin, C.-C.; Khoo, K.-H.; Lin, C.-H.; Wong, C.-H. Studies on the Immuno-Modulating and Anti-Tumor Activities of Ganoderma lucidum (Reishi) Polysaccharides. Bioorg. Med. Chem. 2004, 12, 5595–5601. DOI: 10.1016/j.bmc.2004.08.003.
  • Nworu, C. S.; Ihim, S. A.; Okoye, F. B. C.; Esimone, C. O.; Adikwu, M. U.; Akah, P. A. Immunomodulatory and Immunorestorative Activities of β-d-Glucan-Rich Extract and Polysaccharide Fraction of Mushroom, Pleurutus tuberregium. Pharm. Biol. 2015, 53, 1555–1566. DOI: 10.3109/13880209.2014.991838.
  • Smiderle, F. R.; Baggio, C. H.; Borato, D. G.; Santana-Filho, A. P.; Sassaki, G. L.; Iacomini, M.; Van Griensven, L. J. L. D. Anti-Inflammatory Properties of the Medicinal Mushroom Cordyceps militaris Might Be Related to Its Linear (1→3)-β-D-Glucan. PLoS One 2014, 9, e110266. DOI: 10.1371/journal.pone.0110266.
  • Ruthes, A. C.; Carbonero, E. R.; Córdova, M. M.; Baggio, C. H.; Santos, A. R. S.; Sassaki, G. L.; Cipriani, T. R.; Gorin, P. A. J.; Iacomini, M. Lactarius rufus (1→3),(1→6)-β-d-Glucans: Structure, Antinociceptive and Anti-Inflammatory Effects. Carbohydr. Polym. 2013, 94, 129–136. DOI: 10.1016/j.carbpol.2013.01.026.
  • Lee, S. S.; Tan, N. H.; Fung, S. Y.; Sim, S. M.; Tan, C. S.; Ng, S. T. Anti-Inflammatory Effect of the Sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden, the Tiger Milk Mushroom. BMC Complement Altern. Med. 2014, 14, 359. DOI: 10.1186/1472-6882-14-359.
  • Chun-Hsien, Y.; Chun-Han, S.; Shou-Chou, L.; Lean-Teik, N. Isolation, Anti-Inflammatory Activity and Physico-Chemical Properties of Bioactive Polysaccharides from Fruiting Bodies of Cultivated Cordyceps cicadae (Ascomycetes). Int. J. Med. Mushrooms 2019, 21, 995–1006. DOI: 10.1615/IntJMedMushrooms.2019031922.
  • Tong, H.; Xia, F.; Feng, K.; Sun, G.; Gao, X.; Sun, L.; Jiang, R.; Tian, D.; Sun, X. Structural Characterization and in Vitro Antitumor Activity of a Novel Polysaccharide Isolated from the Fruiting Bodies of Pleurotus ostreatus. Bioresour. Technol. 2009, 100, 1682–1686. DOI: 10.1016/j.biortech.2008.09.004.
  • Xu, H.; Zou, S.; Xu, X.; Zhang, L. Anti-Tumor Effect of β-Glucan from Lentinus edodes and the Underlying Mechanism. Sci. Rep. 2016, 6, 28802. DOI: 10.1038/srep28802.
  • Zhang, X.; Li, T.; Liu, S.; Xu, Y.; Meng, M.; Li, X.; Lin, Z.; Wu, Q.; Xue, Y.; Pan, Y.; et al. β-Glucan from Lentinus edodes Inhibits Breast Cancer Progression via the Nur77/HIF-1α Axis. Biosci. Rep. 2020, 40, BSR20201006. DOI: 10.1042/BSR20201006.
  • Lai, W. H.; Zainal, Z.; Daud, F. Preliminary Study on the Potential of Polysaccharide from Indigenous Tiger’s Milk Mushroom (Lignosus rhinocerus) as Anti-Lung Cancer Agent. AIP Conf. Proc. 2014, 1614, 517–519. DOI: 10.1063/1.4895252.
  • Suziana Zaila, C. F. Antiproliferative Effect of Lignosus Rhinocerotis, the Tiger Milk Mushroom on HCT 116 Human Colorectal Cancer Cells. Open Conf. Proc. J. 2013, 4, 65–70. DOI: 10.2174/2210289201304020065.
  • Zhu, L.; Luo, X.; Tang, Q.; Liu, Y.; Zhou, S.; Yang, Y.; Zhang, J. Isolation, Purification, and Immunological Activities of a Low-Molecular-Weight Polysaccharide from the Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Higher Basidiomycetes). Int. J. Med. Mushrooms 2013, 15, 407–414. DOI: 10.1615/IntJMedMushr.v15.i4.80.
  • Maity, P.; Sen, I. K.; Maji, P. K.; Paloi, S.; Devi, K. S. P.; Acharya, K.; Maiti, T. K.; Islam, S. S. Structural, Immunological, and Antioxidant Studies of β-Glucan from Edible Mushroom Entoloma lividoalbum. Carbohydr. Polym. 2015, 123, 350–358. DOI: 10.1016/j.carbpol.2015.01.051.
  • Liu, Y.; Hu, C.-F.; Feng, X.; Cheng, L.; Ibrahim, S. A.; Wang, C.-T.; Huang, W. Isolation, Characterization and Antioxidant of Polysaccharides from Stropharia rugosoannulata. Int. J. Biol. Macromol. 2020, 155, 883–889. DOI: 10.1016/j.ijbiomac.2019.11.045.
  • Wan-Mohtar, W. A. A. Q. I.; Young, L.; Abbott, G. M.; Clements, C.; Harvey, L. M.; McNeil, B. Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum. J. Microbiol. Biotechnol. 2016, 26, 999–1010. DOI: 10.4014/jmb.1510.10018.
  • Li, S.; Shah, N. P. Antioxidant and Antibacterial Activities of Sulphated Polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chem. 2014, 165, 262–270. DOI: 10.1016/j.foodchem.2014.05.110.
  • Kumar, S. S.; Shankar, S.; Mohan, S. C. In Vitro Antioxidant and Antimicrobial Activity of Polysaccharides Extracted from Edible Mushrooms Pleurotus Florida and Agrocybe cylindracea. Singapore J. Chem. Biol. 2016, 6, 17–22.
  • Guo, F. C.; Savelkoul, H. F. J.; Kwakkel, R. P.; Williams, B. A.; Verstegen, M. W. A. Immunoactive, Medicinal Properties of Mushroom and Herb Polysaccharides and Their Potential Use in Chicken Diets. Worlds Poult. Sci. J. 2003, 59, 427–440. DOI: 10.1079/WPS20030026.
  • Ayeka, P. A. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. Evid. Based Complement Altern. Med. 2018, 2018, 1–9. DOI: 10.1155/2018/7271509.
  • Liu, Q.; Wu, J.; Wang, P.; Lu, Y.; Ban, X. Neutral Polysaccharides from Hohenbuehelia serotina with Hypoglycemic Effects in a Type 2 Diabetic Mouse Model. Front. Pharmacol. 2022, 13, 883653. DOI: 10.3389/fphar.2022.883653.
  • Fang, J.; Wang, Y.; Lv, X.; Shen, X.; Ni, X.; Ding, K. Structure of a β-Glucan from Grifola frondosa and Its Antitumor Effect by Activating Dectin-1/Syk/NF-κB Signaling. Glycoconj J. 2012, 29, 365–377. DOI: 10.1007/s10719-012-9416-z.
  • Wasser, S. P.; Weis, A. L. Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). Int. J. Med. Mushrooms 1999, 1, 31–62. DOI: 10.1615/IntJMedMushrooms.v1.i1.30.
  • Nallathamby, N.; Serm, L. G.; Raman, J.; Malek, S. N. A.; Vidyadaran, S.; Naidu, M.; Kuppusamy, U. R.; Sabaratnam, V. Identification and In Vitro Evaluation of Lipids from Sclerotia of Lignosus Rhinocerotis for Antioxidant and Anti-Neuroinflammatory Activities. Nat. Prod. Commun. 2016, 11, 1486–1490. DOI: 10.1177/1934578X1601101016.
  • Johnathan, M.; Gan, S. H.; Ezumi, M. F. W.; Faezahtul, A. H.; Nurul, A. A. Phytochemical Profiles and Inhibitory Effects of Tiger Milk Mushroom (Lignosus rhinocerus) Extract on Ovalbumin-Induced Airway Inflammation in a Rodent Model of Asthma. BMC Complement Altern. Med. 2016, 16, 167. DOI: 10.1186/s12906-016-1141-x.
  • Muhamad, S.; Muhammad, N.; Ismail, N.; Mohamud, R.; Safuan, S.; Nurul, A. Intranasal Administration of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk Mushroom) Extract Attenuates Airway Inflammation in Murine Model of Allergic Asthma. Exp. Ther. Med. 2019, 17, 3867–3876. DOI: 10.3892/etm.2019.7416.
  • Cai, W.; Hu, T.; Bakry, A. M.; Zheng, Z.; Xiao, Y.; Huang, Q. Effect of Ultrasound on Size, Morphology, Stability and Antioxidant Activity of Selenium Nanoparticles Dispersed by a Hyperbranched Polysaccharide from Lignosus rhinocerotis. Ultrason. Sonochem. 2018, 42, 823–831. DOI: 10.1016/j.ultsonch.2017.12.022.
  • Moldoveanu, S. C.; David, V. Derivatization Methods in GC and GC/MS. In Gas Chromatography - Derivatization, Sample Preparation, Application. IntechOpen: London, 2019; DOI: 10.5772/intechopen.81954.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.