338
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Separation techniques for intact antibody analysis by mass spectrometry

, , , , &

References

  • Campuzano, I. D.; Sandoval, W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. J. Am. Soc. Mass Spectrom. 2021, 32, 1861–1885. DOI: 10.1021/jasms.1c00036.
  • Donnelly, D. P.; Rawlins, C. M.; DeHart, C. J.; Fornelli, L.; Schachner, L. F.; Lin, Z.; Lippens, J. L.; Aluri, K. C.; Sarin, R.; Chen, B.; et al. Best Practices and Benchmarks for Intact Protein Analysis for Top-down Mass Spectrometry. Nat. Methods 2019, 16, 587–594. DOI: 10.1038/s41592-019-0457-0.
  • Catherman, A. D.; Skinner, O. S.; Kelleher, N. L. Top Down Proteomics: Facts and Perspectives. Biochem. Biophys. Res. Commun. 2014, 445, 683–693. DOI: 10.1016/j.bbrc.2014.02.041.
  • Compton, P. D.; Zamdborg, L.; Thomas, P. M.; Kelleher, N. L. On the Scalability and Requirements of Whole Protein Mass Spectrometry. Anal. Chem. 2011, 83, 6868–6874. DOI: 10.1021/ac2010795.
  • Tran, J. C.; Zamdborg, L.; Ahlf, D. R.; Lee, J. E.; Catherman, A. D.; Durbin, K. R.; Tipton, J. D.; Vellaichamy, A.; Kellie, J. F.; Li, M.; et al. Mapping Intact Protein Isoforms in Discovery Mode Using Top-Down Proteomics. Nature 2011, 480, 254–258. DOI: 10.1038/nature10575.
  • Lin, Z.; Wei, L.; Cai, W.; Zhu, Y.; Tucholski, T.; Mitchell, S. D.; Guo, W.; Ford, S. P.; Diffee, G. M.; Ge, Y. Simultaneous Quantification of Protein Expression and Modifications by Top-Down Targeted Proteomics: A Case of the Sarcomeric Subproteome. Mol. Cell. Proteomics 2019, 18, 594–605. DOI: 10.1074/mcp.TIR118.001086.
  • van den Broek, I.; van Dongen, W. D. LC–MS-Based Quantification of Intact Proteins: Perspective for Clinical and Bioanalytical Applications. Bioanalysis 2015, 7, 1943–1958. DOI: 10.4155/bio.15.113.
  • Beck, A.; Sanglier-Cianférani, S.; Van Dorsselaer, A. Biosimilar, Biobetter, and Next Generation Antibody Characterization by Mass Spectrometry. Anal. Chem. 2012, 84, 4637–4646. DOI: 10.1021/ac3002885.
  • Beck, A.; Terral, G.; Debaene, F.; Wagner-Rousset, E.; Marcoux, J.; Janin-Bussat, M.-C.; Colas, O.; Dorsselaer, A. V.; Cianférani, S. Cutting-Edge Mass Spectrometry Methods for the Multi-Level Structural Characterization of Antibody-Drug Conjugates. Expert Rev. Proteomics 2016, 13, 157–183. DOI: 10.1586/14789450.2016.1132167.
  • Chen, B.; Brown, K. A.; Lin, Z.; Ge, Y. Top-Down Proteomics: Ready for Prime Time? Anal. Chem. 2018, 90, 110–127. DOI: 10.1021/acs.analchem.7b04747.
  • Piccoli, S.; Mehta, D.; Vitaliti, A.; Allinson, J.; Amur, S.; Eck, S.; Green, C.; Hedrick, M.; Hopper, S.; Ji, A.; et al. 2019 White Paper on Recent Issues in Bioanalysis: FDA Immunogenicity Guidance, Gene Therapy, Critical Reagents, Biomarkers and Flow Cytometry Validation (Part 3–Recommendations on 2019 FDA Immunogenicity Guidance, Gene Therapy Bioanalytical Challenges, Strategies for Critical Reagent Management, Biomarker Assay Validation, Flow Cytometry Validation & CLSI H62). Bioanalysis 2019, 11, 2207–2244. DOI: 10.4155/bio-2019-0271.
  • Oquendo, E.; Lin, X.; Ye, S.; Coble, K.; Grimaldi, C. Using Multiple Platforms for Critical Reagents Selection Process to Support Pharmacokinetic Ligand-Binding Assay Development. Bioanalysis 2021, 13, 761–769. DOI: 10.4155/bio-2020-0257.
  • Schadt, S.; Hauri, S.; Lopes, F.; Edelmann, M. R.; Staack, R. F.; Villaseñor, R.; Kettenberger, H.; Roth, A. B.; Schuler, F.; Richter, W. F.; Funk, C. Are Biotransformation Studies of Therapeutic Proteins Needed? Scientific Considerations and Technical Challenges. Drug Metab. Dispos. 2019, 47, 1443–1456. DOI: 10.1124/dmd.119.088997.
  • Kang, L.; Weng, N.; Jian, W. LC–MS Bioanalysis of Intact Proteins and Peptides. Biomed. Chromatogr. 2020, 34, e4633. DOI: 10.1002/bmc.4633.
  • Schuster, J.; Koulov, A.; Mahler, H.-C.; Detampel, P.; Huwyler, J.; Singh, S.; Mathaes, R. In Vivo Stability of Therapeutic Proteins. Pharm. Res. 2020, 37, 23. DOI: 10.1007/s11095-019-2689-1.
  • Bobaly, B.; D'Atri, V.; Goyon, A.; Colas, O.; Beck, A.; Fekete, S.; Guillarme, D. Protocols for the Analytical Characterization of Therapeutic Monoclonal Antibodies. II–Enzymatic and Chemical Sample Preparation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1060, 325–335. DOI: 10.1016/j.jchromb.2017.06.036.
  • Bobály, B.; Lauber, M.; Beck, A.; Guillarme, D.; Fekete, S. Utility of a High Coverage Phenyl-Bonding and Wide-Pore Superficially Porous Particle for the Analysis of Monoclonal Antibodies and Related Products. J. Chromatogr. A 2018, 1549, 63–76. DOI: 10.1016/j.chroma.2018.03.043.
  • Bults, P.; Spanov, B.; Olaleye, O.; van de Merbel, N. C.; Bischoff, R. Intact Protein Bioanalysis by Liquid Chromatography–High-Resolution Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1110–1111, 155–167. DOI: 10.1016/j.jchromb.2019.01.032.
  • Kip, Ç.; Liu, S.; Fu, X.; Tuncel, A.; Lämmerhofer, M. In-Situ Photopolymerized C4-Functionalized Organosilicon Monoliths for Reversed-Phase Protein Separation in Nano-Liquid Chromatography. Talanta 2019, 198, 330–336. DOI: 10.1016/j.talanta.2019.01.116.
  • Scheffler, K.; Viner, R.; Damoc, E. High Resolution Top-Down Experimental Strategies on the Orbitrap Platform. J. Proteomics 2018, 175, 42–55. DOI: 10.1016/j.jprot.2017.03.028.
  • Lee, J. E.; Kellie, J. F.; Tran, J. C.; Tipton, J. D.; Catherman, A. D.; Thomas, H. M.; Ahlf, D. R.; Durbin, K. R.; Vellaichamy, A.; Ntai, I.; et al. A Robust Two-Dimensional Separation for Top-Down Tandem Mass Spectrometry of the Low-Mass Proteome. J. Am. Soc. Mass Spectrom. 2009, 20, 2183–2191. DOI: 10.1016/j.jasms.2009.08.001.
  • Kellie, J. F.; Tran, J. C.; Jian, W.; Jones, B.; Mehl, J. T.; Ge, Y.; Henion, J.; Bateman, K. P. Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. J. Am. Soc. Mass Spectrom. 2021, 32, 1886–1900. DOI: 10.1021/jasms.0c00270.
  • Rosati, S.; Rose, R. J.; Thompson, N. J.; van Duijn, E.; Damoc, E.; Denisov, E.; Makarov, A.; Heck, A. J. Exploring an Orbitrap Analyzer for the Characterization of Intact Antibodies by Native Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2012, 51, 12992–12996. DOI: 10.1002/anie.201206745.
  • Zhang, H.; Cui, W.; Gross, M. L. Mass Spectrometry for the Biophysical Characterization of Therapeutic Monoclonal Antibodies. FEBS Lett. 2014, 588, 308–317. DOI: 10.1016/j.febslet.2013.11.027.
  • Khalikova, M. A.; Skarbalius, L.; Naplekov, D. K.; Jadeja, S.; Švec, F.; Lenčo, J. Evaluation of Strategies for Overcoming Trifluoroacetic Acid Ionization Suppression Resulted in Single-Column Intact Level, Middle-up, and Bottom-up Reversed-Phase LC-MS Analyses of Antibody Biopharmaceuticals. Talanta 2021, 233, 122512. DOI: 10.1016/j.talanta.2021.122512.
  • Nguyen, J. M.; Smith, J.; Rzewuski, S.; Legido-Quigley, C.; Lauber, M. A. High Sensitivity LC-MS Profiling of Antibody-Drug Conjugates with Difluoroacetic Acid Ion Pairing. MAbs 2019, 11, 1358–1366. DOI: 10.1080/19420862.2019.1658492.
  • Jian, W.; Kang, L.; Burton, L.; Weng, N. A Workflow for Absolute Quantitation of Large Therapeutic Proteins in Biological Samples at Intact Level Using LC-HRMS. Bioanalysis 2016, 8, 1679–1691. DOI: 10.4155/bio-2016-0096.
  • Lanshoeft, C.; Cianférani, S.; Heudi, O. Generic Hybrid Ligand Binding Assay Liquid Chromatography High-Resolution Mass Spectrometry-Based Workflow for Multiplexed Human Immunoglobulin G1 Quantification at the Intact Protein Level: Application to Preclinical Pharmacokinetic Studies. Anal. Chem. 2017, 89, 2628–2635. DOI: 10.1021/acs.analchem.6b04997.
  • Vasicek, L. A.; Zhu, X.; Spellman, D. S.; Bateman, K. P. Direct Quantitation of Therapeutic Antibodies for Pharmacokinetic Studies Using Immuno-Purification and Intact Mass Analysis. Bioanalysis 2019, 11, 203–213. DOI: 10.4155/bio-2018-0240.
  • Kellie, J. F.; Alelyunas, Y. W.; Albert, J.; Schneck, N. A.; Chen, Z.; Sychterz, C. J.; Edwards, I.; Shion, H.; Wrona, M. D.; Szapacs, M. E. Intact mAb LC–MS for Drug Concentration from Pre-Clinical Studies: Bioanalytical Method Performance and In-Life Samples. Bioanalysis 2020, 12, 1389–1403. DOI: 10.4155/bio-2020-0168.
  • Kellie, J. F.; Pannullo, K. E.; Li, Y.; Fraley, K.; Mayer, A.; Sychterz, C. J.; Szapacs, M. E.; Karlinsey, M. Z. Antibody Subunit LC-MS Analysis for Pharmacokinetic and Biotransformation Determination from In-Life Studies for Complex Biotherapeutics. Anal. Chem. 2020, 92, 8268–8277. DOI: 10.1021/acs.analchem.0c00520.
  • Fekete, S.; Bobály, B.; Nguyen, J. M.; Beck, A.; Veuthey, J.-L.; Wyndham, K.; Lauber, M. A.; Guillarme, D. Use of Ultrashort Columns for Therapeutic Protein Separations. Part 1: Theoretical Considerations and Proof of Concept. Anal. Chem. 2021, 93, 1277–1284. DOI: 10.1021/acs.analchem.0c04082.
  • Farsang, E.; Guillarme, D.; Veuthey, J. L.; Beck, A.; Lauber, M.; Schmudlach, A.; Fekete, S. Coupling Non-denaturing Chromatography to Mass Spectrometry for the Characterization of Monoclonal Antibodies and Related Products. J. Pharm. Biomed. Anal. 2020, 185, 113207. DOI: 10.1016/j.jpba.2020.113207.
  • Deslignière, E.; Ley, M.; Bourguet, M.; Ehkirch, A.; Botzanowski, T.; Erb, S.; Hernandez-Alba, O.; Cianférani, S. Pushing the Limits of Native MS: Online SEC-Native MS for Structural Biology Applications. Int. J. Mass Spectrom. 2021, 461, 116502. DOI: 10.1016/j.ijms.2020.116502.
  • Yan, Y.; Xing, T.; Wang, S.; Daly, T. J.; Li, N. Coupling Mixed-Mode Size Exclusion Chromatography with Native Mass Spectrometry for Sensitive Detection and Quantitation of Homodimer Impurities in Bispecific IgG. Anal. Chem. 2019, 91, 11417–11424. DOI: 10.1021/acs.analchem.9b02793.
  • Ding, L.; Guo, Z.; Hu, Z.; Liang, X. Mixed-Mode Reversed Phase/Positively Charged Repulsion Chromatography for Intact Protein Separation. J. Pharm. Biomed. Anal. 2017, 138, 63–69. DOI: 10.1016/j.jpba.2017.01.004.
  • Chen, B.; Lin, Z.; Alpert, A. J.; Fu, C.; Zhang, Q.; Pritts, W. A.; Ge, Y. Online Hydrophobic Interaction Chromatography–Mass Spectrometry for the Analysis of Intact Monoclonal Antibodies. Anal. Chem. 2018, 90, 7135–7138. DOI: 10.1021/acs.analchem.8b01865.
  • Chen, B.; Peng, Y.; Valeja, S. G.; Xiu, L.; Alpert, A. J.; Ge, Y. Online Hydrophobic Interaction Chromatography–Mass Spectrometry for Top-down Proteomics. Anal. Chem. 2016, 88, 1885–1891. DOI: 10.1021/acs.analchem.5b04285.
  • Rodler, A.; Ueberbacher, R.; Beyer, B.; Jungbauer, A. Calorimetry for Studying the Adsorption of Proteins in Hydrophobic Interaction Chromatography. Prep. Biochem. Biotechnol. 2019, 49, 1–20. DOI: 10.1080/10826068.2018.1487852.
  • Füssl, F.; Cook, K.; Scheffler, K.; Farrell, A.; Mittermayr, S.; Bones, J. Charge Variant Analysis of Monoclonal Antibodies Using Direct Coupled pH Gradient Cation Exchange Chromatography to High-Resolution Native Mass Spectrometry. Anal. Chem. 2018, 90, 4669–4676. DOI: 10.1021/acs.analchem.7b05241.
  • Xiu, L.; Valeja, S. G.; Alpert, A. J.; Jin, S.; Ge, Y. Effective Protein Separation by Coupling Hydrophobic Interaction and Reverse Phase Chromatography for Top-down Proteomics. Anal. Chem. 2014, 86, 7899–7906. DOI: 10.1021/ac501836k.
  • Sarin, D.; Kumar, S.; Rathore, A. S. Multiattribute Monitoring of Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using 2D HIC-WCX-MS. Anal. Chem. 2022, 94, 15018–15026. DOI: 10.1021/acs.analchem.2c02931.
  • Wei, B.; Han, G.; Tang, J.; Sandoval, W.; Zhang, Y. T. Native Hydrophobic Interaction Chromatography Hyphenated to Mass Spectrometry for Characterization of Monoclonal Antibody Minor Variants. Anal. Chem. 2019, 91, 15360–15364. DOI: 10.1021/acs.analchem.9b04467.
  • Yan, Y.; Xing, T.; Wang, S.; Daly, T. J.; Li, N. Online Coupling of Analytical Hydrophobic Interaction Chromatography with Native Mass Spectrometry for the Characterization of Monoclonal Antibodies and Related Products. J. Pharm. Biomed. Anal. 2020, 186, 113313. DOI: 10.1016/j.jpba.2020.113313.
  • Muneeruddin, K.; Nazzaro, M.; Kaltashov, I. A. Characterization of Intact Protein Conjugates and Biopharmaceuticals Using Ion-Exchange Chromatography with Online Detection by Native Electrospray Ionization Mass Spectrometry and Top-Down Tandem Mass Spectrometry. Anal. Chem. 2015, 87, 10138–10145. DOI: 10.1021/acs.analchem.5b02982.
  • Bailey, A. O.; Han, G.; Phung, W.; Gazis, P.; Sutton, J.; Josephs,J. L.; Sandoval, W. Charge Variant Native Mass SpectrometryBenefits Mass Precision and Dynamic Range of Monoclonal Antibody Intact Mass Analysis. MAbs. 2018, 10, 1214–1225. DOI: 10.1080/19420862.2018.1521131.
  • Leblanc, Y.; Ramon, C.; Bihoreau, N.; Chevreux, G. Charge Variants Characterization of a Monoclonal Antibody by Ion Exchange Chromatography Coupled On-line to Native Mass Spectrometry: Case Study after a Long-Term Storage at +5 C. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1048, 130–139. DOI: 10.1016/j.jchromb.2017.02.017.
  • Leblanc, Y.; Faid, V.; Lauber, M.; Wang, Q.; Bihoreau, N.; Chevreux, G. A Generic Method for Intact and Subunit Level Characterization of mAb Charge Variants by Native Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1133, 121814. DOI: 10.1016/j.jchromb.2019.121814.
  • Matsuda, Y.; Kliman, M.; Mendelsohn, B. A. Application of Native Ion Exchange Mass Spectrometry to Intact and Subunit Analysis of Site-Specific Antibody–Drug Conjugates Produced by AJICAP First Generation Technology. J. Am. Soc. Mass Spectrom. 2020, 31, 1706–1712. DOI: 10.1021/jasms.0c00129.
  • Duong, V.-A.; Park, J.-M.; Lee, H. Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-up Proteomics. IJMS 2020, 21, 1524. DOI: 10.3390/ijms21041524.
  • Shen, X.; Yang, Z.; McCool, E. N.; Lubeckyj, R. A.; Chen, D.; Sun, L. Capillary Zone Electrophoresis-Mass Spectrometry for Top-Down Proteomics. TrAC Trends Anal. Chem. 2019, 120, 115644. DOI: 10.1016/j.trac.2019.115644.
  • Haselberg, R.; de Jong, G. J.; Somsen, G. W. Capillary Electrophoresis-Mass Spectrometry for the Analysis of Intact Proteins 2007–2010. Electrophoresis 2011, 32, 66–82. DOI: 10.1002/elps.201000364.
  • Haselberg, R.; De Vijlder, T.; Heukers, R.; Smit, M. J.; Romijn, E. P.; Somsen, G. W.; Dominguez-Vega, E. Heterogeneity Assessment of Antibody-Derived Therapeutics at the Intact and Middle-up Level by Low-Flow Sheathless Capillary Electrophoresis-Mass Spectrometry. Anal. Chim. Acta 2018, 1044, 181–190. DOI: 10.1016/j.aca.2018.08.024.
  • Lubeckyj, R. A.; McCool, E. N.; Shen, X.; Kou, Q.; Liu, X.; Sun, L. Single-Shot Top-Down Proteomics with Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry for Identification of Nearly 600 Escherichia coli Proteoforms. Anal. Chem. 2017, 89, 12059–12067. DOI: 10.1021/acs.analchem.7b02532.
  • Voeten, R. L. C.; Ventouri, I. K.; Haselberg, R.; Somsen, G. W. Capillary Electrophoresis: Trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. DOI: 10.1021/acs.analchem.8b00015.
  • Gahoual, R.; Beck, A.; Leize-Wagner, E.; Francois, Y. N. Cutting-Edge Capillary Electrophoresis Characterization of Monoclonal Antibodies and Related Products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1032, 61–78. DOI: 10.1016/j.jchromb.2016.05.028.
  • Redman, E. A.; Batz, N. G.; Mellors, J. S.; Ramsey, J. M. Integrated Microfluidic Capillary Electrophoresis-Electrospray Ionization Devices with Online MS Detection for the Separation and Characterization of Intact Monoclonal Antibody Variants. Anal. Chem. 2015, 87, 2264–2272. DOI: 10.1021/ac503964j.
  • Redman, E. A.; Mellors, J. S.; Starkey, J. A.; Ramsey, J. M. Characterization of Intact Antibody Drug Conjugate Variants Using Microfluidic Capillary Electrophoresis-Mass Spectrometry. Anal. Chem. 2016, 88, 2220–2226. DOI: 10.1021/acs.analchem.5b03866.
  • Said, N.; Gahoual, R.; Kuhn, L.; Beck, A.; Francois, Y. N.; Leize-Wagner, E. Structural Characterization of Antibody Drug Conjugate by a Combination of Intact, Middle-up and Bottom-up Techniques Using Sheathless Capillary Electrophoresis – Tandem Mass Spectrometry as nanoESI Infusion Platform and Separation Method. Anal. Chim. Acta 2016, 918, 50–59. DOI: 10.1016/j.aca.2016.03.006.
  • Giorgetti, J.; Beck, A.; Leize-Wagner, E.; Francois, Y. N. Combination of Intact, Middle-up and Bottom-up Levels to Characterize 7 Therapeutic Monoclonal Antibodies by Capillary Electrophoresis – Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 182, 113107. DOI: 10.1016/j.jpba.2020.113107.
  • Belov, A. M.; Viner, R.; Santos, M. R.; Horn, D. M.; Bern, M.; Karger, B. L.; Ivanov, A. R. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis – Native Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28, 2614–2634. DOI: 10.1007/s13361-017-1781-1.
  • Shen, X.; Liang, Z.; Xu, T.; Yang, Z.; Wang, Q.; Chen, D.; Pham, L.; Du, W.; Sun, L. Investigating Native Capillary Zone Electrophoresis-Mass Spectrometry on a High-End Quadrupole-Time-of-Flight Mass Spectrometer for the Characterization of Monoclonal Antibodies. Int. J. Mass Spectrom. 2021, 462, 116541.
  • Wang, Y.; Feng, P.; Sosic, Z.; Zang, L. Monitoring Glycosylation Profile and Protein Titer in Cell Culture Samples Using ZipChip CE-MS. J. Anal. Bioanal. Tech. 2017, 08, 1–8. DOI: 10.4172/2155-9872.1000359.
  • Cao, L.; Fabry, D.; Lan, K. Rapid and Comprehensive Monoclonal Antibody Characterization Using Microfluidic CE-MS. J. Pharm. Biomed. Anal. 2021, 204, 114251. DOI: 10.1016/j.jpba.2021.114251.
  • Wu, Z.; Wang, H.; Wu, J.; Huang, Y.; Zhao, X.; Nguyen, J. B.; Rosconi, M. P.; Pyles, E. A.; Qiu, H.; Li, N. High-Sensitivity and High-Resolution Therapeutic Antibody Charge Variant and Impurity Characterization by Microfluidic Native Capillary Electrophoresis-Mass Spectrometry. J. Pharm. Biomed. Anal. 2023, 223, 115147. DOI: 10.1016/j.jpba.2022.115147.
  • Wang, L.; Chen, D. D. Y. Analysis of Four Therapeutic Monoclonal Antibodies by Online Capillary Isoelectric Focusing Directly Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Electrophoresis 2019, 40, 2899–2907. DOI: 10.1002/elps.201900195.
  • Schlecht, J.; Jooß, K.; Moritz, B.; Kiessig, S.; Neusüß, C. Two-Dimensional Capillary Zone Electrophoresis-Mass Spectrometry: Intact mAb Charge Variant Separation Followed by Peptide Level Analysis Using In-capillary Digestion. Anal. Chem. 2023, 95, 4059–4066. DOI: 10.1021/acs.analchem.2c04578.
  • Roda, B.; Zattoni, A.; Reschiglian, P.; Moon, M. H.; Mirasoli, M.; Michelini, E.; Roda, A. Field-Flow Fractionation in Bioanalysis: A Review of Recent Trends. Anal. Chim. Acta 2009, 635, 132–143. DOI: 10.1016/j.aca.2009.01.015.
  • Kachuk, C.; Faulkner, M.; Liu, F.; Doucette, A. A. Automated SDS Depletion for Mass Spectrometry of Intact Membrane Proteins Though Transmembrane Electrophoresis. J. Proteome Res. 2016, 15, 2634–2642. DOI: 10.1021/acs.jproteome.6b00199.
  • Kim, K. H.; Moon, M. H. Chip-Type Asymmetrical Flow Field-Flow Fractionation Channel Coupled with Mass Spectrometry for Top-down Protein Identification. Anal. Chem. 2011, 83, 8652–8658. DOI: 10.1021/ac202098b.
  • Kim, K. H.; Compton, P. D.; Tran, J. C.; Kelleher, N. L. Online Matrix Removal Platform for Coupling Gel-Based Separations to Whole Protein Electrospray Ionization Mass Spectrometry. J. Proteome Res. 2015, 14, 2199–2206. DOI: 10.1021/pr501331q.
  • Park, H.-M.; Winton, V. J.; Drader, J. J.; Manalili Wheeler, S.; Lazar, G. A.; Kelleher, N. L.; Liu, Y.; Tran, J. C.; Compton, P. D. Novel Interface for High-Throughput Analysis of Biotherapeutics by Electrospray Mass Spectrometry. Anal. Chem. 2020, 92, 2186–2193. DOI: 10.1021/acs.analchem.9b04826.
  • d‘Atri, V.; Causon, T.; Hernandez‐Alba, O.; Mutabazi, A.; Veuthey, J. L.; Cianferani, S.; Guillarme, D. Adding a New Separation Dimension to MS and LC–MS: What Is the Utility of Ion Mobility Spectrometry? J. Sep. Sci. 2018, 41, 20–67. DOI: 10.1002/jssc.201700919.
  • Hernandez-Alba, O.; Wagner-Rousset, E.; Beck, A.; Cianférani, S. Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies. Anal. Chem. 2018, 90, 8865–8872. DOI: 10.1021/acs.analchem.8b00912.
  • Hamid, A. M.; Garimella, S. V. B.; Ibrahim, Y. M.; Deng, L.; Zheng, X.; Webb, I. K.; Anderson, G. A.; Prost, S. A.; Norheim, R. V.; Tolmachev, A. V.; et al. Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations. Anal. Chem. 2016, 88, 8949–8956. DOI: 10.1021/acs.analchem.6b01914.
  • Deng, L.; Ibrahim, Y. M.; Hamid, A. M.; Garimella, S. V. B.; Webb, I. K.; Zheng, X.; Prost, S. A.; Sandoval, J. A.; Norheim, R. V.; Anderson, G. A.; et al. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module. Anal. Chem. 2016, 88, 8957–8964. DOI: 10.1021/acs.analchem.6b01915.
  • Ibrahim, Y. M.; Hamid, A. M.; Deng, L.; Garimella, S. V. B.; Webb, I. K.; Baker, E. S.; Smith, R. D. New Frontiers for Mass Spectrometry Based upon Structures for Lossless Ion Manipulations. Analyst 2017, 142, 1010–1021. DOI: 10.1039/c7an00031f.
  • Deng, L.; Webb, I. K.; Garimella, S. V. B.; Hamid, A. M.; Zheng, X.; Norheim, R. V.; Prost, S. A.; Anderson, G. A.; Sandoval, J. A.; Baker, E. S.; et al. Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS Using Structures for Lossless Ion Manipulations. Anal. Chem. 2017, 89, 4628–4634. DOI: 10.1021/acs.analchem.7b00185.
  • Nagy, G.; Attah, I. K.; Conant, C. R.; Liu, W.; Garimella, S. V. B.; Gunawardena, H. P.; Shaw, J. B.; Smith, R. D.; Ibrahim, Y. M. Rapid and Simultaneous Characterization of Drug Conjugation in Heavy and Light Chains of a Monoclonal Antibody Revealed by High-Resolution Ion Mobility Separations in SLIM. Anal. Chem. 2020, 92, 5004–5012. DOI: 10.1021/acs.analchem.9b05209.
  • Giles, K.; Ujma, J.; Wildgoose, J.; Pringle, S.; Richardson, K.; Langridge, D.; Green, M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91, 8564–8573. DOI: 10.1021/acs.analchem.9b01838.
  • Merenbloom, S. I.; Glaskin, R. S.; Henson, Z. B.; Clemmer, D. E. High-Resolution Ion Cyclotron Mobility Spectrometry. Anal. Chem. 2009, 81, 1482–1487. DOI: 10.1021/ac801880a.
  • Kirk, A. T.; Bohnhorst, A.; Raddatz, C.-R.; Allers, M.; Zimmermann, S. Ultra-High-Resolution Ion Mobility Spectrometry—Current Instrumentation, Limitations, and Future Developments. Anal. Bioanal. Chem. 2019, 411, 6229–6246. DOI: 10.1007/s00216-019-01807-0.
  • Dodds, J. N.; Baker, E. S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195. DOI: 10.1007/s13361-019-02288-2.
  • Skeene, K.; Khatri, K.; Soloviev, Z.; Lapthorn, C. Current Status and Future Prospects for Ion-Mobility Mass Spectrometry in the Biopharmaceutical Industry. Biochim. Biophys. Acta. Proteins Proteom. 2021, 1869, 140697. DOI: 10.1016/j.bbapap.2021.140697.
  • Bagal, D.; Valliere-Douglass, J. F.; Balland, A.; Schnier, P. D. Resolving Disulfide Structural Isoforms of IgG2 Monoclonal Antibodies by Ion Mobility Mass Spectrometry. Anal. Chem. 2010, 82, 6751–6755. DOI: 10.1021/ac1013139.
  • Tian, Y.; Han, L.; Buckner, A. C.; Ruotolo, B. T. Collision Induced Unfolding of Intact Antibodies: Rapid Characterization of Disulfide Bonding Patterns, Glycosylation, and Structures. Anal. Chem. 2015, 87, 11509–11515. DOI: 10.1021/acs.analchem.5b03291.
  • Pisupati, K.; Tian, Y.; Okbazghi, S.; Benet, A.; Ackermann, R.; Ford, M.; Saveliev, S.; Hosfield, C. M.; Urh, M.; Carlson, E.; et al. A Multidimensional Analytical Comparison of Remicade and the Biosimilar Remsima. Anal. Chem. 2017, 89, 4838–4846. DOI: 10.1021/acs.analchem.6b04436.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.