343
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Platform analytical method for intact polysorbates in protein-containing biopharmaceutical products via HPLC-CAD

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all

References

  • Charman, S. A.; Mason, K. L.; Charman, W. N. Techniques for Assessing the Effects of Pharmaceutical Excipients on the Aggregation of Porcine Growth Hormone. Pharm. Res. 1993, 10, 954–962. DOI:10.1023/a:1018994102218.
  • Katakam, M.; Bell, L. N.; Banga, A. K. Effect of Surfactants on the Physical Stability of the Recombinant Human Growth Hormone. J. Pharm. Sci. 1995, 84, 713–716. DOI:10.1002/jps.2600840609.
  • Mahler, H.-C.; Müller, R.; Friess, W.; Delille, A.; Matheus, S. Induction and Analysis of Aggregates in a Liquid IgG1-Antibody Formulation. Eur. J. Pharm. Biopharm. 2005, 59, 407–417. DOI:10.1016/j.ejpb.2004.12.004.
  • Chang, B. S.; Carpenter, J. F.; Kendrick, B. S. Surface-Induced Denaturation of Proteins during Freezing and Its Inhibition by Surfactants. J. Pharm. Sci. 1996, 85, 1325–1330. DOI:10.1021/js960080y.
  • Levine, H. L.; Ransohoff, T. C.; Kawahata, R. T.; McGregor, W. C. The Use of Surface-Tension Measurements in the Design of Antibody-Based Product Formulations. PDA J. Pharm. Sci. Technol. 1991, 45, 160–165.
  • Bam, N. B.; Randolph, T. W.; Cleland, J. L. Stability of Protein Formulations: Investigation of Surfactant Effects by a Novel EPR Spectroscopic Technique. Pharm. Res. 1995, 12, 2–11. DOI:10.1023/a:1016286600229.
  • Rudiuk, S.; Cohen-Tannoudji, L.; Huille, S.; Tribet, C. Importance of the Dynamics of Adsorption and of a Transient Interfacial Stress on the Formation of Aggregates of IgG Antibodies. Soft Matter 2012, 8, 2651–2661. DOI:10.1039/c2sm07017k.
  • Basu, P.; Krishnan, S.; Thirumangalathu, R.; Randolph, T. W.; Carpenter, J. F. IgG1 Aggregation and Particle Formation Induced by Silicone-Water Interfaces on Siliconized Borosilicate Glass Beads: A Model for Siliconized Primary Containers. J. Pharm. Sci. 2013, 102, 852–865. DOI:10.1002/jps.23434.
  • Britt, K. A.; Schwartz, D. K.; Wurth, C.; Mahler, H.-C.; Carpenter, J. F.; Randolph, T. W. Excipient Effects on Humanized Monoclonal Antibody Interactions with Silicone Oil Emulsions. J. Pharm. Sci. 2012, 101, 4419–4432. DOI:10.1002/jps.23318.
  • Gerhardt, A.; Mcgraw, N. R.; Schwartz, D. K.; Bee, J. S.; Carpenter, J. F.; Randolph, T. W. Protein Aggregation and Particle Formation in Prefilled Glass Syringes. J. Pharm. Sci. 2014, 103, 1601–1612. DOI:10.1002/jps.23973.
  • Khan, T. A.; Mahler, H. C.; Kishore, R. S. K. Key Interactions of Surfactants in Therapeutic Protein Formulations: A Review. Eur. J. Pharm. Biopharm. 2015, 97, 60–67. DOI:10.1016/j.ejpb.2015.09.016.
  • Bos, M. A.; Van Vliet, T. Interfacial Rheological Properties of Adsorbed Protein Layers and Surfactants: A Review. Adv. Colloid Interface Sci. 2001, 91, 437–471. DOI:10.1016/s0001-8686(00)00077-4.
  • Poppe, L.; Knutson, N.; Cao, S.; Wikström, M. In Situ Quantification of Polysorbate in Pharmaceutical Samples of Therapeutic Proteins by Hydrodynamic Profiling by NMR. Anal. Chem. 2019, 91, 7807–7811. DOI:10.1021/acs.analchem.9b01442.
  • Cheng, Y.; Liu, Y.; Wei, H.; Sun, R.; Tian, Z.; Zheng, X. Quantitation of Low Concentrations of Polysorbates 80 in Protein Formulations by Coomassie Brilliant Blue. Anal. Biochem. 2019, 573, 67–72. DOI:10.1016/j.ab.2019.03.001.
  • Kranz, W.; Wuchner, K.; Corradini, E.; Berger, M.; Hawe, A. Factors Influencing Polysorbate’s Sensitivity against Enzymatic Hydrolysis and Oxidative Degradation. J. Pharm. Sci. 2019, 108, 2022–2032. DOI:10.1016/j.xphs.2019.01.006.
  • Koppolu, V.; Vemulapalli, B.; Thomas, J.; Wang, S.-C.; Borman, J. A Universal Method for the Determination of Polysorbate 80 in Monoclonal Antibodies and Novel Protein Therapeutic Formulations. Anal. Methods 2018, 10, 1296–1304. DOI:10.1039/C7AY02537H.
  • Hewitt, D.; Alvarez, M.; Robinson, K.; Ji, J.; Wang, Y. J.; Kao, Y.-H.; Zhang, T. Mixed-Mode and Reversed-Phase Liquid Chromatography-Tandem Mass Spectrometry Methodologies to Study Composition and Base Hydrolysis of Polysorbate 20 and 80. J. Chromatogr. A 2011, 1218, 2138–2145. DOI:10.1016/j.chroma.2010.09.057.
  • Zheng, S.; Smith, P.; Burton, L.; Adams, M. L. Sensitive Fluorescence-Based Method for the Rapid Determination of Polysorbate-80 Content in Therapeutic Monoclonal Antibody Products. Pharm. Dev. Technol. 2015, 20, 872–876. DOI:10.3109/10837450.2014.930490.
  • Fekete, S.; Ganzler, K.; Fekete, J. Fast and Sensitive Determination of Polysorbate 80 in Solutions Containing Proteins. J. Pharm. Biomed. Anal. 2010, 52, 672–679. DOI:10.1016/j.jpba.2010.02.035.
  • Zhang, Q.; Wang, A.; Meng, Y.; Ning, T.; Yang, H.; Ding, L.; Xiao, X.; Li, X. NMR Method for Accurate Quantification of Polysorbate 80 Copolymer Composition. Anal. Chem. 2015, 87, 9810–9816. DOI:10.1021/acs.analchem.5b02096.
  • Shi, S.; Chen, Z.; Rizzo, J. M.; Semple, A.; Mittal, S.; Cheung, J. K.; Richardson, D.; Antochshuk, V.; Shameem, M. A Highly Sensitive Method for the Quantitation of Polysorbate 20 and 80 to Study Compatibility between Polysorbates and m-Cresol in the Peptide Formulation. J. Anal. Bioanal. Tech 2015, 6, 245–262.
  • Kim, J.; Qiu, J. Quantitation of Low Concentrations of Polysorbates in High Protein Concentration Formulations by Solid Phase Extraction and Cobalt-Thiocyanate Derivatization. Anal. Chim. Acta 2014, 806, 144–151. DOI:10.1016/j.aca.2013.11.005.
  • Labrenz, S. R. Ester Hydrolysis of Polysorbate 80 in mAb Drug Product: Evidence in Support of the Hypothesized Risk after the Observation of Visible Particulate in mAb Formulations. J. Pharm. Sci. 2014, 103, 2268–2277. DOI:10.1002/jps.24054.
  • Zhang, R.; Wang, Y.; Tan, L.; Zhang, H. Y.; Yang, M. Analysis of Polysorbate 80 and Its Related Compounds by RP-HPLC with ELSD and MS Detection. J. Chromatogr. Sci. 2012, 50, 598–607. DOI:10.1093/chromsci/bms035.
  • Nair, L. M.; Stephens, N. V.; Vincent, S.; Raghavan, N.; Sand, P. J. Determination of Polysorbate 80 in Parenteral Formulations by High-Performance Liquid Chromatography and Evaporative Light Scattering Detection. J. Chromatogr. A 2003, 1012, 81–86. DOI:10.1016/s0021-9673(03)01105-1.
  • Adamo, M.; Dick, L. W.; Qiu, D.; Lee, A.-H.; Devincentis, J.; Cheng, K.-C. A Simple Reversed Phase High-Performance Liquid Chromatography Method for Polysorbate 80 Quantitation in Monoclonal Antibody Drug Products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 1865–1870. DOI:10.1016/j.jchromb.2010.04.039.
  • Shende, N.; Karale, A.; Bhagade, S.; Gulhane, A.; Bore, P.; Marathe, P.; Chakraborty, S.; Mallya, A. D.; Dhere, R. M. Evaluation of a Sensitive GC-MS Method to Detect Polysorbate 80 in Vaccine Preparation. J. Pharm. Biomed. Anal. 2020, 183, 113126. DOI:10.1016/j.jpba.2020.113126.
  • Webster, G. K.; Chang, J. C.; Heflin, J. L. Stability Indicating Method for Polysorbate 80 in Protein Formulations. J. Chromatogr. Sci. 2021, 59, 706–713. DOI:10.1093/chromsci/bmaa116.
  • Martos, A.; Koch, W.; Jiskoot, W.; Wuchner, K.; Winter, G.; Friess, W.; Hawe, A. Trends on Analytical Characterization of Polysorbates and Their Degradation Products in Biopharmaceutical Formulations. J. Pharm. Sci. 2017, 106, 1722–1735. DOI:10.1016/j.xphs.2017.03.001.
  • Khossravi, M.; Kao, Y.-H.; Mrsny, R. J.; Sweeney, T. D. Analysis Methods of Polysorbate 20: A New Method to Assess the Stability of Polysorbate 20 and Established Methods That May Overlook Degraded Polysorbate 20. Pharm. Res. 2002, 19, 634–639. DOI:10.1023/a:1015306112979.
  • Brito, R. M.; Vaz, W. L. Determination of the Critical Micelle Concentration of Surfactants Using the Fluorescent Probe N-Phenyl-1-Napthylamine. Anal. Biochem. 1986, 152, 250–255. DOI:10.1016/0003-2697(86)90406-9.
  • Ilko, D.; Braun, A.; Germershaus, O.; Meinel, L.; Holzgrabe, U. Fatty Acid Composition Analysis in Polysorbate 80 with High Performance Liquid Chromatography Coupled to Charged Aerosol Detection. Eur. J. Pharm. Biopharm. 2015, 94, 569–574. DOI:10.1016/j.ejpb.2014.11.018.
  • Borisov, O. V.; Ji, J. A.; Wang, Y. J. Oxidative Degradation of Polysorbate Surfactants Studied by Liquid Chromatography-Mass Spectrometry. J. Pharm. Sci. 2015, 104, 1005–1018. DOI:10.1002/jps.24314.
  • Borisov, O. V.; Ji, J. A.; Wang, Y. J.; Vega, F.; Ling, V. T. Toward Understanding Molecular Heterogeneity of Polysorbates by Application of Liquid Chromatography-Mass Spectrometry with Computer-Aided Data Analysis. Anal. Chem. 2011, 83, 3934–3942. DOI:10.1021/ac2005789.
  • United States Pharmacopeial Convention. United States Pharmacopeia and National Formulary; United States Pharmacopeial Convention: Rockville, MD, 2018.
  • Wu, Z.; Zhang, Q.; Li, N.; Pu, Y.; Wang, B.; Zhang, T. Comparison of Critical Methods Developed for Fatty Acid Analysis: A Review. J. Sep. Sci. 2017, 40, 288–298. DOI:10.1002/jssc.201600707.
  • Council of Europe. European Pharmacopoeia, 93rd ed.; European Medicines Agency: Strasbourg, 2017.
  • Pharmaceutical and Medical Devices Agency. Japanese Pharmacopoeia, 17th ed.; Pharmaceutical and Medical Devices Agency: Tokyo, 2017.
  • Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia, 10th ed.; China Medical Science Press: Beijing, 2015.
  • Mattson, F. H.; Volpenhein, R. A. Digestion of the Mono- and Diesters of Hexane-1,6-Diol by Pancreatic Lipase. J. Lipid Res. 1972, 13, 256–262. DOI:10.1016/S0022-2275(20)39420-7.
  • Briand, D.; Dubreucq, E.; Grimaud, J.; Galzy, P. Substrate Specificity of the Lipase from Candida parapsilosis. Lipids 1995, 30, 747–754. DOI:10.1007/BF02537802.
  • Jones, M. T.; Mahler, H.-C.; Yadav, S.; Bindra, D.; Corvari, V.; Fesinmeyer, R. M.; Gupta, K.; Harmon, A. M.; Hinds, K. D.; Koulov, A.; et al. Considerations for the Use of Polysorbates in Biopharmaceuticals. Pharm. Res. 2018, 35, 148. DOI:10.1007/s11095-018-2430-5.
  • Dwivedi, M.; Blech, M.; Presser, I.; Garidel, P. Polysorbate Degradation in Biotherapeutic Formulations: Identification and Discussion of Current Root Causes. Int. J. Pharm. 2018, 552, 422–436. DOI:10.1016/j.ijpharm.2018.10.008.
  • Bates, T. R.; Nightingale, C. H.; Dixon, E. Kinetics of Hydrolysis of Polyoxyethylene (20) Sorbitan Fatty Acid Ester Surfactants. J. Pharm. Pharmacol. 1973, 25, 470–477. DOI:10.1111/j.2042-7158.1973.tb09135.x.
  • Dwivedi, M.; Buske, J.; Haemmerling, F.; Blech, M.; Garidel, P. Acidic and Alkaline Hydrolysis of Polysorbates under Aqueous Conditions: Towards Understanding Polysorbate Degradation in Biopharmaceutical Formulations. Eur. J. Pharm. Sci. 2020, 144, 105211. DOI:10.1016/j.ejps.2019.105211.
  • Chiu, J.; Valente, K. N.; Levy, N. E.; Min, L.; Lenhoff, A. M.; Lee, K. H. Knockout of a Difficult-to-Remove CHO Host Cell Protein, Lipoprotein Lipase, for Improved Polysorbate Stability in Monoclonal Antibody Formulations. Biotechnol. Bioeng. 2017, 114, 1006–1015. DOI:10.1002/bit.26237.
  • Dixit, N.; Salamat-Miller, N.; Salinas, P. A.; Taylor, K. D.; Basu, S. K. Residual Host Cell Protein Promotes Polysorbate 20 Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid Particles. J. Pharm. Sci. 2016, 105, 1657–1666. DOI:10.1016/j.xphs.2016.02.029.
  • Li, X.; Chandra, D.; Letarte, S.; Adam, G. C.; Welch, J.; Yang, R. S.; Rivera, S.; Bodea, S.; Dow, A.; Chi, A.; et al. Profiling Active Enzymes for Polysorbate Degradation in Biotherapeutics by Activity-Based Protein Profiling. Anal. Chem. 2021, 93, 8161–8169. https://doi.org/10.1021/acs.analchem.1c00042.
  • McShan, A. C.; Kei, P.; Ji, J. A.; Kim, D. C.; Wang, Y. J. Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases. PDA J. Pharm. Sci. Technol. 2016, 70, 332–345. DOI:10.5731/pdajpst.2015.005942.
  • Zhang, S.; Xiao, H.; Molden, R.; Qiu, H.; Li, N. Rapid Polysorbate 80 Degradation by Liver Carboxylesterase in a Monoclonal Antibody Formulated Drug Substance at Early Stage Development. J. Pharm. Sci. 2020, 109, 3300–3307. DOI:10.1016/j.xphs.2020.07.018.
  • Hvattum, E.; Yip, W. L.; Grace, D.; Dyrstad, K. Characterization of Polysorbate 80 with Liquid Chromatography Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy: specific Determination of Oxidation Products of Thermally Oxidized Polysorbate 80. J. Pharm. Biomed. Anal. 2012, 62, 7–16. DOI:10.1016/j.jpba.2011.12.009.
  • Gopalrathnam, G.; Sharma, A. N.; Dodd, S. W.; Huang, L. Impact of Stainless Steel Exposure on the Oxidation of Polysorbate 80 in Histidine Placebo and Active Monoclonal Antibody Formulation. PDA J. Pharm. Sci. Technol. 2018, 72, 163–175. DOI:10.5731/pdajpst.2017.008284.
  • Zhang, L.; Yadav, S.; John Wang, Y.; Mozziconacci, O.; Schӧneich, C. Dual Effect of Histidine on Polysorbate 20 Stability: mechanistic Studies. Pharm. Res. 2018, 35, 33. DOI:10.1007/s11095-017-2321-1.
  • Yarbrough, M.; Hodge, T.; Menard, D.; Jerome, R.; Ryczek, J.; Moore, D.; Baldus, P.; Warne, N.; Ohtake, S. Edetate Disodium as a Polysorbate Degradation and Monoclonal Antibody Oxidation Stabilizer. J. Pharm. Sci. 2019, 108, 1631–1635. DOI:10.1016/j.xphs.2018.11.031.
  • He, Y.; Brown, P.; Bailey Piatchek, M. R.; Carroll, J. A.; Jones, M. T. On-Line Coupling of Hydrophobic Interaction Column with Reverse Phase Column-Charged Aerosol Detector/Mass Spectrometer to Characterize Polysorbates in Therapeutic Protein Formulations. J. Chromatogr. A 2019, 1586, 72–81. DOI:10.1016/j.chroma.2018.11.080.
  • Dahotre, S.; Tomlinson, A.; Lin, B.; Yadav, S. Novel Markers to Track Oxidative Polysorbate Degradation in Pharmaceutical Formulations. J. Pharm. Biomed. Anal. 2018, 157, 201–207. DOI:10.1016/j.jpba.2018.05.031.
  • Hewitt, D.; Zhang, T.; Kao, Y. H. Quantitation of Polysorbate 20 in Protein Solutions Using Mixed-Mode Chromatography and Evaporative Light Scattering Detection. J. Chromatogr. A 2008, 1215, 156–160. DOI:10.1016/j.chroma.2008.11.017.
  • Puschmann, J.; Evers, D.-H.; Müller-Goymann, C. C.; Herbig, M. E. Development of a Design of Experiments Optimized Method for Quantification of Polysorbate 80 Based on Oleic Acid Using UHPLC-MS. J. Chromatogr. A 2019, 1599, 136–143. DOI:10.1016/j.chroma.2019.04.015.
  • Almeling, S.; Ilko, D.; Holzgrabe, U. Charged Aerosol Detection in Pharmaceutical Analysis. J. Pharm. Biomed. Anal. 2012, 69, 50–63. DOI:10.1016/j.jpba.2012.03.019.
  • Brunelli, C.; Górecki, T.; Zhao, Y.; Sandra, P. Corona-Charged Aerosol Detection in Supercritical Fluid Chromatography for Pharmaceutical Analysis. Anal. Chem. 2007, 79, 2472–2482. DOI:10.1021/ac061854q.
  • Robinson, M. W.; Hill, A. P.; Readshaw, S. A.; Hollerton, J. C.; Upton, R. J.; Lynn, S. M.; Besley, S. C.; Boughtflower, B. J. Use of Calculated Physicochemical Properties to Enhance Quantitative Response When Using Charged Aerosol Detection. Anal. Chem. 2017, 89, 1772–1777. DOI:10.1021/acs.analchem.6b04060.
  • Lei, M.; Sugahara, J.; Hewitt, D.; Beane, D.; Jayakar, R.; Cornell, C.; Skidmore, K.; Kao, Y.-H.; Ji, J. The Effects of Membrane Filters Used in Biopharmaceutical Processes on the Concentration and Composition of Polysorbate 20. Biotechnol. Prog. 2013, 29, 1503–1511. DOI:10.1002/btpr.1824.
  • Baird, D. C. Experimentation: An Introduction to Measurement Theory and Experiment Design, 3rd ed.; Pearson: Upper Saddle RIver, NJ, 1994.
  • Haidar Ahmad, I. A.; Blasko, A.; Tam, J.; Variankaval, N.; Halsey, H. M.; Hartman, R.; Regalado, E. L. Revealing the Inner Workings of the Power Function Algorithm in Charged Aerosol Detection: A Simple and Effective Approach to Optimizing Power Function Value from Quantitative Analysis. J. Chromatogr. A 2019, 1603, 1–7. DOI:10.1016/j.chroma.2019.04.017.
  • Li, Y.; Hewitt, D.; Lentz, Y. K.; Ji, J. A.; Zhang, T. Y.; Zhang, K. Characterization and Stability Study of Polysorbate 20 in Therapeutic Monoclonal Antibody Formulation by Multidimensional Ultrahigh-Performance Liquid Chromatography–Charged Aerosol Detection–Mass Spectrometry. Anal. Chem. 2014, 86, 5150–5157. DOI:10.1021/ac5009628.
  • Kishore, R. S. K.; Pappenberger, A.; Dauphin, I. B.; Ross, A.; Buergi, B.; Staempfli, A.; Mahler, H.-C. Degradation of Polysorbates 20 and 80: Studies on Thermal Autoxidation and Hydrolysis. J. Pharm. Sci. 2011, 100, 721–731. DOI:10.1002/jps.22290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.