87
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Application of capillary electrophoresis-sodium dodecyl sulfate in assessing the purity of monoclonal antibody biopharmaceuticals

, &

References

  • Lechner, A.; Giorgetti, J.; Gahoual, R.; Beck, A.; Leize-Wagner, E.; François, Y. N. Insights from Capillary Electrophoresis Approaches for Characterization of Monoclonal Antibodies and Antibody Drug Conjugates in the Period 2016–2018. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1122–1123, 1–17. DOI: 10.1016/j.jchromb.2019.05.014.
  • DiPaolo, B.; Pennetti, A.; Nugent, L.; Venkat, K. Monitoring Impurities in Biopharmaceuticals Produced by Recombinant Technology. Pharm. Sci. Technol. Today 1999, 2, 70–82. DOI: 10.1016/s1461-5347(99)00120-0.
  • Yan, Y.; Wei, H.; Fu, Y.; Jusuf, S.; Zeng, M.; Ludwig, R.; Krystek, S. R.; Chen, G.; Tao, L.; Das, T. K.; et al. Isomerization and Oxidation in the Complementarity-Determining Regions of a Monoclonal Antibody: A Study of the Modification-Structure-Function Correlations by Hydrogen-Deuterium Exchange Mass Spectrometry. Anal. Chem. 2016, 88, 2041–2050. DOI: 10.1021/acs.analchem.5b02800.
  • Hermeling, S.; Crommelin, D. J.; Schellekens, H.; Jiskoot, W. Structure-Immunogenicity Relationships of Therapeutic Proteins. Pharm. Res. 2004, 21, 897–903. DOI: 10.1023/b:pham.0000029275.41323.a6.
  • Zhang, G.; Jing, R.; Guo, L.; Xing, Y.; Xue M. Analysis technology and application progress of therapeutic monoclonal antibody drugs. Chinese Journal of New drugs 2021, 30, 528–534.
  • Kumar, R.; Guttman, A.; Rathore, A. S. Applications of Capillary Electrophoresis for Biopharmaceutical Product Characterization. Electrophoresis 2022, 43, 143–166. DOI: 10.1002/elps.202100182.
  • Suntornsuk, L. Capillary Electrophoresis in Pharmaceutical Analysis: A Survey on Recent Applications. J. Chromatogr. Sci. 2007, 45, 559–577. DOI: 10.1093/chromsci/45.9.559.
  • Zhao, S. S.; Chen, D. D. Applications of Capillary Electrophoresis in Characterizing Recombinant Protein Therapeutics. Electrophoresis 2014, 35, 96–108. DOI: 10.1002/elps.201300372.
  • Tamizi, E.; Jouyban, A. The Potential of the Capillary Electrophoresis Techniques for Quality Control of Biopharmaceuticals-a Review. Electrophoresis 2015, 36, 831–858. DOI: 10.1002/elps.201400343.
  • Hjertén, S. High-Performance Electrophoresis: The Electrophoretic Counterpart of High-Performance Liquid Chromatography. J. Chromatogr. A 1983, 270, 1–6. DOI: 10.1016/S0021-9673(01)96347-2.
  • Jorgenson, J. W.; Lukacs, K. D. Capillary Zone Electrophoresis. Science 1983, 222, 266–272. DOI: 10.1126/science.6623076.
  • L. Farmerie, R. R. Rustandi, J. W. Loughney, and M. Dawod, Recent Advances in Isoelectric Focusing of Proteins and Peptides. J. Chromatogr. A. 2021, 1651, 462274. DOI: 10.1016/j.chroma.2021.462274.
  • Bhimwal, R.; Rustandi, R. R.; Payne, A.; Dawod, M. Recent Advances in Capillary Gel Electrophoresis for the Analysis of Proteins. J. Chromatogr. A 2022, 1682, 463453. DOI: 10.1016/j.chroma.2022.463453.
  • Altria, K. D. Capillary Electrophoresis Guidebook: Principles, Operation, and Applications (Methods in Molecular Biology; Humana Press: Totowa, 1996.
  • Onizhuk, M.; Panteleimonov, A.; Kholin, Y.; Ivanov, V. Dissociation Constants of Silanol Groups of Silic Acids: Quantum Chemical Estimations. J. Struct. Chem. 2018, 59, 261–271. DOI: 10.1134/S0022476618020026.
  • Lee Simas Porto, B.; Valdés, A.; Cifuentes, A.; Alvarez-Rivera, G. Capillary Electrophoresis in Phytochemical Analysis: Advances and Applications in the Period 2018–2021. TrAC Trends Anal. Chem. 2023, 161, 116974. DOI: 10.1016/j.trac.2023.116974.
  • Castagnola, M. Capillary Electrophoresis: Principles, Practice and Application S. F. Y. LI (ED). Elsevier Science Publishers, Amsterdam, The Netherlands, 1992. Journal of Chromatography Library, Vol. 52. Biomed. Chromatogr. 1993, 7, 118–118. DOI: 10.1002/bmc.1130070215.
  • Yamada, H.; Matsumura, C.; Yamada, K.; Teshima, K.; Hiroshima, T.; Kinoshita, M.; Suzuki, S.; Kakehi, K. Combination of SDS-PAGE and Intact Mass Analysis for Rapid Determination of Heterogeneities in Monoclonal Antibody Therapeutics. Electrophoresis 2017, 38, 1344–1352. DOI: 10.1002/elps.201700014.
  • Chiari, M.; Righetti, P. G. New Types of Separation Matrices for Electrophoresis. Electrophoresis 1995, 16, 1815–1829. DOI: 10.1002/elps.11501601300.
  • Sänger-van de Griend, C. E. CE-SDS Method Development, Validation, and Best Practice—an Overview. Electrophoresis 2019, 40, 18–19.
  • Sartori, A.; Barbier, V.; Viovy, J. L. Sieving Mechanisms in Polymeric Matrices. Electrophoresis 2003, 24, 421–440. DOI: 10.1002/elps.200390052.
  • Štěpánová, S.; Kašička, V. Applications of Capillary Electromigration Methods for Separation and Analysis of Proteins (2017-Mid 2021) - a Review. Anal. Chim. Acta. 2022, 1209, 339447. DOI: 10.1016/j.aca.2022.339447.
  • Staikos, G.; Dondos, A. Study of the Sodium Dodecyl Sulphate-Protein Complexes: Evidence of Their Wormlike Conformation by Treating Them as Random Coil Polymers. Colloid Polym. Sci. 2009, 287, 1001–1004. DOI: 10.1007/s00396-009-2059-3.
  • Breadmore, M. C. Electrokinetic and Hydrodynamic Injection: Making the Right Choice for Capillary Electrophoresis. Bioanalysis 2009, 1, 889–894. DOI: 10.4155/bio.09.73.
  • Yu, D.; Mayani, M.; Song, Y.; Xing, Z.; Ghose, S.; Li, Z. J. Control of Antibody High and Low Molecular Weight Species by Depth Filtration-Based Cell Culture Harvesting. Biotechnol. Bioeng. 2019, 116, 2610–2620. DOI: 10.1002/bit.27081.
  • Wang, W. H.; Cheung-Lau, J.; Chen, Y.; Lewis, M.; Tang, Q. M. Specific and High-Resolution Identification of Monoclonal Antibody Fragments Detected by Capillary Electrophoresis-Sodium Dodecyl Sulfate Using Reversed-Phase HPLC with Top-Down Mass Spectrometry Analysis. MAbs 2019, 11, 1233–1244. DOI: 10.1080/19420862.2019.1646554.
  • Rouby, G.; Tran, N. T.; Leblanc, Y.; Taverna, M.; Bihoreau, N. Investigation of Monoclonal Antibody Dimers in a Final Formulated Drug by Separation Techniques Coupled to Native Mass Spectrometry. MAbs 2020, 12, e1781743.
  • Schiel, J. E.; Turner, A.; Mouchahoir, T.; Yandrofski, K.; Telikepalli, S.; King, J.; DeRose, P.; Ripple, D.; Phinney, K. The NISTmAb Reference Material 8671 Value Assignment, Homogeneity, and Stability. Anal. Bioanal. Chem. 2018, 410, 2127–2139. DOI: 10.1007/s00216-017-0800-1.
  • Turner, A.; Yandrofski, K.; Telikepalli, S.; King, J.; Heckert, A.; Filliben, J.; Ripple, D.; Schiel, J. E. Development of Orthogonal NISTmAb Size Heterogeneity Control Methods. Anal. Bioanal. Chem. 2018, 410, 2095–2110. DOI: 10.1007/s00216-017-0819-3.
  • Cai, H.; Song, Y.; Zhang, J.; Shi, T.; Fu, Y.; Li, R.; Mussa, N.; Li, Z. J. Optimization Of Microchip-Based Electrophoresis for Monoclonal Antibody Product Quality Analysis Revealed Needs for Extra Surfactants During Denaturation. J. Pharm. Biomed. Anal. 2016, 120, 46–56. DOI: 10.1016/j.jpba.2015.10.041.
  • Römer, J.; Stolz, A.; Kiessig, S.; Moritz, B.; Neusüß, C. Online Top-Down Mass Spectrometric Identification of CE(SDS)-Separated Antibody Fragments by Two-Dimensional Capillary Electrophoresis. J. Pharm. Biomed. Anal. 2021, 201, 114089. DOI: 10.1016/j.jpba.2021.114089.
  • Cerutti, M. L.; Pesce, A.; Bès, C.; Seigelchifer, M. Physicochemical and Biological Characterization of RTXM83, a New Rituximab Biosimilar. BioDrugs 2019, 33, 307–319. DOI: 10.1007/s40259-019-00349-2.
  • Chen, L.; Wang, L.; Shion, H.; Yu, C.; Yu, Y. Q.; Zhu, L.; Li, M.; Chen, W.; Gao, K. In-Depth Structural Characterization of Kadcyla® (Ado-Trastuzumab Emtansine) and Its Biosimilar Candidate. MAbs 2016, 8, 1210–1223. DOI: 10.1080/19420862.2016.1204502.
  • Griaud, F.; Winter, A.; Denefeld, B.; Lang, M.; Hensinger, H.; Straube, F.; Sackewitz, M.; Berg, M. Identification of Multiple Serine to Asparagine Sequence Variation Sites in an Intended Copy Product of LUCENTIS® by Mass Spectrometry. MAbs 2017, 9, 1337–1348. DOI: 10.1080/19420862.2017.1366395.
  • Kubota, K.; Kobayashi, N.; Yabuta, M.; Ohara, M.; Naito, T.; Kubo, T.; Otsuka, K. Identification and Characterization of a Thermally Cleaved Fragment of Monoclonal Antibody-a Detected by Sodium Dodecyl Sulfate-Capillary Gel Electrophoresis. J. Pharm. Biomed. Anal. 2017, 140, 98–104. DOI: 10.1016/j.jpba.2017.03.027.
  • Miao, S.; Fan, L.; Zhao, L.; Ding, D.; Liu, X.; Wang, H.; Tan, W.-S. Physicochemical and Biological Characterization of the Proposed Biosimilar Tocilizumab. Biomed. Res. Int. 2017, 2017, 4926168–4926113. DOI: 10.1155/2017/4926168.
  • Vimpolsek, M.; Gottar-Guillier, M.; Rossy, E. Assessing the Extended In-Use Stability of the Infliximab Biosimilar PF-06438179/GP1111 Following Preparation for Intravenous Infusion. Drugs R D 2019, 19, 127–140. DOI: 10.1007/s40268-019-0264-1.
  • WLamanna, W. C.; Heller, K.; Schneider, D.; Guerrasio, R.; Hampl, V.; Fritsch, C.; Schiestl, M. The In-Use Stability of the Rituximab Biosimilar Rixathon®/Riximyo® Upon Preparation for Intravenous Infusion. J. Oncol. Pharm. Pract. 2019, 25, 269–278. DOI: 10.1177/1078155217731506.
  • Zeng, J.; Chen, X. A Study on the Stability of Recombinant Humanized Anti-TNF-α Monoclonal Antibodies. Biol. Chem. Eng. 2019, 005, 23–25.
  • Esterman, A. L.; Katiyar, A.; Krishnamurthy, G. Implementation of USP Antibody Standard for System Suitability in Capillary Electrophoresis Sodium Dodecyl Sulfate (CE-SDS) for Release and Stability Methods. J. Pharm. Biomed. Anal. 2016, 128, 447–454. DOI: 10.1016/j.jpba.2016.06.006.
  • Cui, T.; Chi, B.; Heidbrink Thompson, J.; Kasali, T.; Sellick, C.; Turner, R. Cathepsin D: Removal Strategy on Protein a Chromatography, Near Real Time Monitoring and Characterisation During Monoclonal Antibody Production. J. Biotechnol. 2019, 305, 51–60. DOI: 10.1016/j.jbiotec.2019.08.013.
  • Römer, J.; Montealegre, C.; Schlecht, J.; Kiessig, S.; Moritz, B.; Neusüß, C. Online Mass Spectrometry of CE (SDS)-Separated Proteins by Two-Dimensional Capillary Electrophoresis. Anal. Bioanal. Chem. 2019, 411, 7197–7206. DOI: 10.1007/s00216-019-02102-8.
  • Römer, J.; Kiessig, S.; Moritz, B.; Neusüß, C. Improved CE(SDS)-CZE-MS Method Utilizing an 8-Port Nanoliter Valve. Electrophoresis 2021, 42, 374–380. DOI: 10.1002/elps.202000180.
  • Duhamel, L.; Gu, Y.; Barnett, G.; Tao, Y.; Voronov, S.; Ding, J.; Mussa, N.; Li, Z. J. Therapeutic Protein Purity and Fragmented Species Characterization by Capillary Electrophoresis Sodium Dodecyl Sulfate Using Systematic Hybrid Cleavage and Forced Degradation. Anal. Bioanal. Chem. 2019, 411, 5617–5629. DOI: 10.1007/s00216-019-01942-8.
  • Wong, V.; Pascual Fernandez, L.; Kallamvalli Illam Sankaran, P.; Holt, A.; Mishra, R.; Sinha, V.; Lindo, V. Systematic Analytical Workflow for Characterisation and Identification of Partially Reduced Species in Monoclonal Antibody Manufacturing. Anal. Biochem. 2023, 666, 115073. /04/01/2023. DOI: 10.1016/j.ab.2023.115073.
  • Yang, B.; Li, W.; Zhao, H.; Wang, A.; Lei, Y.; Xie, Q.; Xiong, S. Discovery and Characterization of CHO Host Cell Protease-Induced Fragmentation of a Recombinant Monoclonal Antibody During Production Process Development. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1112, 1–10.)Apr 1 DOI: 10.1016/j.jchromb.2019.02.020.
  • Liu, R.; Chen, X.; Dushime, J.; Bogalhas, M.; Lazar, A. C.; Ryll, T.; Wang, L. The Impact of Trisulfide Modification of Antibodies on the Properties of Antibody-Drug Conjugates Manufactured Using Thiol Chemistry. MAbs 2017, 9, 490–497. DOI: 10.1080/19420862.2017.1285478.
  • Zhu, Y.; Ahluwalia, D.; Chen, Y.; Belakavadi, M.; Katiyar, A.; Das, T. K. Characterization of Therapeutic Antibody Fragmentation Using Automated Capillary Western Blotting as an Orthogonal Analytical Technique. Electrophoresis 2019, 40, 2888–2898. DOI: 10.1002/elps.201900119.
  • Wagner, E.; Colas, O.; Chenu, S.; Goyon, A.; Murisier, A.; Cianferani, S.; François, Y.; Fekete, S.; Guillarme, D.; D'Atri, V.; et al. Determination of Size Variants by CE-SDS for Approved Therapeutic Antibodies: Key Implications of Subclasses and Light Chain Specificities. J. Pharm. Biomed. Anal. 2020, 184, 113166. DOI: 10.1016/j.jpba.2020.113166.
  • Filep, C.; Guttman, A. Effect of the Monomer Cross-Linker Ratio on the Separation Selectivity of Monoclonal Antibody Subunits in Sodium Dodecyl Sulfate Capillary Gel Electrophoresis. Anal. Chem. 2021, 93, 3535–3541. DOI: 10.1021/acs.analchem.0c04927.
  • Filep, C.; Szigeti, M.; Farsang, R.; Haberger, M.; Reusch, D.; Guttman, A. Multilevel Capillary Gel Electrophoresis Characterization of New Antibody Modalities. Anal. Chim. Acta 2021, 1166, 338492. DOI: 10.1016/j.aca.2021.338492.
  • Kovács, Z.; Szarka, M.; Szigeti, M.; Guttman, A. Separation Window Dependent Multiple Injection (SWDMI) for Large Scale Analysis of Therapeutic Antibody N-Glycans. J. Pharm. Biomed. Anal. 2016, 128, 367–370. DOI: 10.1016/j.jpba.2016.06.002.
  • Szigeti, M.; Bondar, J.; Gjerde, D.; Keresztessy, Z.; Szekrenyes, A.; Guttman, A. Rapid N-Glycan Release from Glycoproteins Using Immobilized PNGase F Microcolumns. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1032, 139–143. DOI: 10.1016/j.jchromb.2016.02.006.
  • Kubo, T.; Nishimura, N.; Furuta, H.; Kubota, K.; Naito, T.; Otsuka, K. Tunable Separations Based on a Molecular Size Effect for Biomolecules by Poly(ethylene glycol) Gel-Based Capillary Electrophoresis. J. Chromatogr. A 2017, 1523, 107–113. DOI: 10.1016/j.chroma.2017.06.043.
  • Chen, C.-H.; Feng, H.; Guo, R.; Li, P.; Laserna, A. K. C.; Ji, Y.; Ng, B. H.; Li, S. F. Y.; Khan, S. H.; Paulus, A.; et al. Intact NIST Monoclonal Antibody Characterization—Proteoforms, Glycoforms—Using CE-MS and CE-LIF. Cogent Chem. 2018, 4, 1480455. DOI: 10.1080/23312009.2018.1480455.
  • Khan, S.; Liu, J.; Szabo, Z.; Kunnummal, B.; Han, X.; Ouyang, Y.; Linhardt, R. J.; Xia, Q. On-Line Capillary Electrophoresis/Laser-Induced Fluorescence/Mass Spectrometry Analysis of Glycans Labeled with Teal™ Fluorescent Dye Using an Electrokinetic Sheath Liquid Pump-Based Nanospray Ion Source. Rapid Commun. Mass Spectrom. 2018, 32, 882–888. DOI: 10.1002/rcm.8116.
  • van Tricht, E.; Geurink, L.; Pajic, B.; Nijenhuis, J.; Backus, H.; Germano, M.; Somsen, G. W.; Sänger-van de Griend, C. E. New Capillary Gel Electrophoresis Method for Fast and Accurate Identification and Quantification of Multiple Viral Proteins in Influenza Vaccines. Talanta 2015, 144, 1030–1035. DOI: 10.1016/j.talanta.2015.07.047.
  • Zhang, C. X.; Meagher, M. M. Sample Stacking Provides Three Orders of Magnitude Sensitivity Enhancement in SDS Capillary Gel Electrophoresis of Adeno-Associated Virus Capsid Proteins. Anal. Chem. 2017, 89, 3285–3292. DOI: 10.1021/acs.analchem.6b02933.
  • Li, M.; Yu, C.; Wang, W.; Wu, G.; Wang, L. Interlaboratory Method Validation of Capillary Electrophoresis Sodium Dodecyl Sulfate (CE-SDS) Methodology for Analysis of mAbs. Electrophoresis 2021, 42, 1900–1913. DOI: 10.1002/elps.202000396.
  • Li, Y. A Brief Introduction of IgG-like Bispecific Antibody Purification: Methods for Removing Product-Related Impurities. Protein Expr. Purif. 2019, 155, 112–119. DOI: 10.1016/j.pep.2018.11.011.
  • Wang, J.; Qiao, Y.; Qin, H.; Cui, B.; Nan, J.; Mao, X. CE-SDS Were Applied to Determine Monomer Purity and Proportion of Non-glycosylated Heavy Chain in Reference Products of Anti-CD52 Humanized Monoclonal Antibody. Progress in Modern Biomedicine 2018, 18, 2836–2840.
  • Zhu, Z.; Lu, J. J.; Liu, S. Protein Separation by Capillary Gel Electrophoresis: A Review. Anal. Chim. Acta 2012, 709, 21–31. DOI: 10.1016/j.aca.2011.10.022.
  • Guan, Q.; Atsma, J.; Tulsan, R.; Voronov, S.; Ding, J.; Beckman, J.; Li, Z. J. Minimization of Artifact Protein Aggregation Using Tetradecyl Sulfate and Hexadecyl Sulfate in Capillary Gel. Electrophor. Under Reduc. Cond. 2020, 41, 1245–1252. DOI: 10.1002/elps.202070072.
  • Guan, Q. Enhancement of Covalent Aggregate Quantification of Protein Therapeutics by Non-reducing Capillary Gel Electrophoresis Using Sodium Hexadecyl Sulfate (CE-SHS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1152, 122230. DOI: 10.1016/j.jchromb.2020.122230.
  • Shi, Y.; Li, Z.; Lin, J. J. A. M. Advantages of CE-SDS Over SDS-PAGE in mAb Purity Analysis. Analytical Methods 2012, 4, no. 6, 1637–1642. DOI: 10.1039/c2ay25208b.
  • Scheller, C.; Krebs, F.; Wiesner, R.; Wtzig, H.; Oltmann-Norden, I. J. E. A Comparative Study of CE-SDS, SDS-PAGE, and Simple Western-Precision, Repeatability, and Apparent Molecular Mass Shifts by Glycosylation. Electrophoresis 2021, 42, 1521–1531.
  • Dada, O. O.; Rao, R.; Jones, N.; Jaya, N.; Salas-Solano, O. Comparison of SEC and CE-SDS Methods for Monitoring Hinge Fragmentation in IgG1 Monoclonal Antibodies. J. Pharm. Biomed. Anal. 2017, 145, 91–97. DOI: 10.1016/j.jpba.2017.06.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.