185
Views
16
CrossRef citations to date
0
Altmetric
Research Article

The effect of molecular weights of microencapsulating polymers on viability of mouse-cloned pancreatic β-cells: biomaterials, osmotic forces and potential applications in diabetes treatment

, , , &
Pages 145-150 | Received 05 Feb 2017, Accepted 17 Apr 2017, Published online: 09 May 2017

References

  • Bhatia SR, Khattak SF, Roberts SC. 2005. Polyelectrolytes for cell encapsulation. Curr Opin Colloid Interface Sci. 10:45–51.
  • Calafiore R. 2003. Alginate microcapsules for pancreatic islet cell graft immunoprotection: struggle and progress towards the final cure for type 1 diabetes mellitus. Expert Opin Biol Ther. 3:201–205.
  • Darrabie M, Freeman BK, Kendall WF Jr, Hobbs HA, Opara EC. 2001. Durability of sodium sulfate-treated polylysine–alginate microcapsules. J Biomed Mater Res. 54:396–399.
  • De Vos P, De Haan BJ, Kamps JA, Faas MM, Kitano T. 2007. Zeta-potentials of alginate-PLL capsules: a predictive measure for biocompatibility? J Biomed Mater Res A. 80:813–819.
  • De Vos P, Faas MM, Strand B, Calafiore R. 2006. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials. 27:5603–5617.
  • De Vos P, Hamel A, Tatarkiewicz K. 2002. Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia. 45:159–173.
  • De Vos P, Lazarjani HA, Poncelet D, Faas MM. 2013. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev. 67–68:15–34.
  • Del Guerra S, Bracci C, Nilsson K, Belcourt A, Kessler L, Lupi R, Marselli L, De Vos P, Marchetti P. 2001. Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: preparation, in vitro characterization, and microencapsulation. Biotechnol Bioeng. 75:741–744.
  • Mazzoccoli JP, Feke DL, Baskaran H, Pintauro PN. 2010. Mechanical and cell viability properties of crosslinked low- and high-molecular weight poly(ethylene glycol) diacrylate blends. J Biomed Mater Res A. 93:558–566.
  • Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K. 1990. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 127:126–132.
  • Mooranian A, Negrulj R, Al-Salami H. 2015a. The effects of ionic gelation-vibrational jet flow technique in fabrication of microcapsules incorporating beta-cell: applications in type-1 diabetes. Curr Diabetes Rev. 13:91–96.
  • Mooranian A, Negrulj R, Al-Salami H. 2015b. The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies. Drug Deliv Transl Res. 6:17–23.
  • Mooranian A, Negrulj R, Al-Salami H. 2016a. Alginate-deoxycholic acid interaction and its impact on pancreatic Β-cells and insulin secretion and potential treatment of type 1 diabetes. J Pharm Innov. 11:156–161.
  • Mooranian A, Negrulj R, Al-Salami H. 2016b. Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of beta-cells. Ther Deliv. 7:171–178.
  • Mooranian A, Negrulj R, Al-Salami H. 2016c. The influence of stabilized deconjugated ursodeoxycholic acid on polymer-hydrogel system of transplantable NIT-1 cells. Pharm Res. 33:1182–1190.
  • Mooranian A, Negrulj R, Al-Salami H. 2016d. Primary bile acid chenodeoxycholic acid-based microcapsules to examine β-cell survival and the inflammatory response. BioNanoScience. 1–7:103–109
  • Mooranian A, Negrulj R, Al-Salami H. 2016e. Viability and topographical analysis of microencapsulated β-cells exposed to a biotransformed tertiary bile acid: an ex vivo study. Int J Nano. Biomaterials. 6:74–82.
  • Mooranian A, Negrulj R, Al-Salami H. 2016f. The impact of allylamine-bile acid combinations on cell delivery microcapsules in diabetes. J Microencapsul. 33:569–574.
  • Mooranian A, Negrulj R, Arfuso F, Al-Salami H. 2014a. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells. Artif Cells Nanomed Biotechnol. 44:194–200.
  • Mooranian A, Negrulj R, Chen-Tan N, Fakhouri M, Jones F, Arfuso F, Al-Salami H. 2015c. Novel multicompartmental bile acid-based microcapsules for pancreatic beta-cell Transplantation. Transplantation. 99:S151–S152.
  • Mooranian A, Negrulj R, Chen-Tan N, Fakhoury M, Arfuso F, Jones F, Al-Salami H. 2014b. Advanced bile acid-based multi-compartmental microencapsulated pancreatic beta-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment. Artif Cells Nanomed Biotechnol. 44:588–595.
  • Mooranian A, Negrulj R, Chen-Tan N, Fakhoury M, Jones F, Arfuso F, Al-Salami H. 2015e. Novel multicompartmental bile acid-based microcapsules for pancreatic beta-cell transplantation. Xenotransplantation. 22:S93–S94.
  • Mooranian A, Negrulj R, Jamieson E, Morahan G, Al-Salami H. 2016g. Biological assessments of encapsulated pancreatic β-cells: their potential transplantation in diabetes. Cell Mol Bio. 9:530–537.
  • Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, Mukkur TK, Mikov M, Lalic-Popovic M, Stojancevic M, et al. 2014c. An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations. Pharm Dev Technol. 20:702–709.
  • Mooranian A, Negrulj R, Morahan G, Jamieson E, Al-Salami H. 2016h. Designing anti-diabetic beta-cells microcapsules using polystyrenic sulfonate, polyallylamine and a tertiary bile acid: morphology, bioenergetics and cytokine analysis. Biotechnol Prog. 32:501–509.
  • Negrulj R, Mooranian A, Chen-Tan N, Al-Sallami HS, Mikov M, Golocorbin-Kon S, Fakhoury M, Watts GF, Arfuso F, Al-Salami H. 2015. Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes. Artif Cells Nanomed Biotechnol. 44:1290–1297.
  • Rokstad AM, Brekke O-L, Steinkjer B, Ryan L, Kolláriková G, Strand BL, Skjåk-Bræk G, Lacík I, Espevik T, Mollnes TE. 2011. Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater. 7:2566–2578.
  • Rokstad AM, Lacik I, De Vos P, Strand BL. 2013. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev. 67–68:111–130.
  • Rokstad AM, Strand B, Rian K, Steinkjer B, Kulseng B, Skjak-Braek G, Espevik T. 2003. Evaluation of different types of alginate microcapsules as bioreactors for producing endostatin. Cell Transplant. 12:351–364.
  • Snider C, Lee SY, Yeo Y, Gregori GJ, Robinson JP, Park K. 2008. Microenvironment-controlled encapsulation (MiCE) process: effects of PLGA concentration, flow rate, and collection method on microcapsule size and morphology. Pharm Res. 25:5–15.
  • Steiner DJ, Kim A, Miller K, Hara M. 2010. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets. 2:135–145.
  • Zellander A, Kadakia-Bhasin A, Mahksous M, Michael Cho M. 2013. Mechanical diversity of porous poly (ethylene glycol) diacrylate. Adv Biomed Eng Res (ABER). 1:9–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.