468
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG–PCL polymersomes for inhibition of MCF-7 breast cancer cell line

, , , &
Pages 89-98 | Received 26 Oct 2017, Accepted 28 Dec 2017, Published online: 18 Jan 2018

References

  • Aghajanzadeh M, Zamani M, Molavi H, Manjili HK, Danafar H, Shojaei A. 2018. Preparation of metal–organic frameworks UiO-66 for adsorptive removal of methotrexate from aqueous solution. J Inorg Organomet Polym Mater. 28(1):177–186.
  • Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R, Bertino JR. 2002. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta (BBA)-Mol Basis Dis. 1587:164–173.
  • Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, Tao W, Mei L, Huang L, Zeng X. 2016. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci. 463:279–287.
  • Cheng W, Chaoyu L, Wang X, Tsai H, Liu G, Peng Y, Nie J, Huang L, Mei L, Zeng X. 2017. A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle: “four-in-one” versatile nanomedicine for targeted multidrug-resistant cancer therapy. Nanoscale. 9:17063–17073.
  • Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. 2017. A pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces. 9(22):18462–18473.
  • Couvreur P, Vauthier C. 2006. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 23:1417–1450.
  • Danafar H, Hamidi M. 2015. Pharmacokinetics and bioequivalence study of amlodipine and atorvastatin in healthy male volunteers by LC–MS. Pharm Sci. 21:167–174.
  • Danafar H, Jaberizadeh H, Andalib S. 2017. In vitro and in vivo delivery of gliclazide loaded mPEG–PCL micelles and its kinetic release and solubility study. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2017.1386191.
  • Danafar H, Manjili H, Najafi M. 2016. Study of copolymer composition on drug loading efficiency of enalapril in polymersomes and cytotoxicity of drug loaded nanoparticles. Drug Res (Stuttg). 66:495–504.
  • Danafar H, Rostamizadeh K, Davaran S, Hamidi M. 2017. Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG–PCL nanoparticles. Drug Dev Ind Pharm. 43:1908–1918.
  • Danafar H, Sharafi A, Kheiri Manjili H, Andalib S. 2017. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol. 22:642–651.
  • Danafar H. 2016. Applications of copolymeric nanoparticles in drug delivery systems. Drug Res (Stuttg). 66:506–519.
  • Danafar H. 2017. Study of the composition of polycaprolactone/poly(ethylene glycol)/polycaprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles. Jundishapur J Nat Pharm Prod. 12:e34179.
  • Duthie SJ. 2001. Folic-acid-mediated inhibition of human colon-cancer cell growth. Nutrition. 17(9):736–737.
  • Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ. 2017. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials. 119:78–85.
  • Gharebaghi F, Dalali N, Ahmadi E, Danafar H. 2017. Preparation of wormlike polymeric nanoparticles coated with silica for delivery of methotrexate and evaluation of anticancer activity against MCF7 cells. J Biomater Appl. 31:1305–1316.
  • Guo F, Guo D, Zhang W, Yan Q, Yang Y, Hong W, Yang G. 2017. Preparation of curcumin-loaded PCL–PEG–PCL triblock copolymeric nanoparticles by a microchannel technology. Eur J Pharm Sci. 99:328–336.
  • Kohler N, Sun C, Wang J, Zhang M. 2005. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. 21:8858–8864.
  • Kulkarni P, Haldar M, Confeld M, Langaas C, Yang X, Qian S, Mallik S. 2016. Mitochondria-targeted fluorescent polymersomes for drug delivery to cancer cells. Polym Chem. 7:4151–4154.
  • Kumari A, Yadav SK, Yadav SC. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 75:1–18.
  • Liu Q, Song L, Chen S, Gao J, Zhao P, Du J. 2017. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 114:23–33.
  • Mandal A, Bisht R, Rupenthal ID, Mitra AK. 2017. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 248:96–116.
  • Manjili HK, Malvandi H, Mousavi MS, Attari E, Danafar H. 2017. In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2017.1347880.
  • Manjili HK, Sharafi A, Attari E, Danafar H. 2017. Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL–PEG–PCL copolymeric-based micelles. Artif Cells Nanomed Biotechnol. 45:1728–1739.
  • Matsumura Y, Maeda H. 1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46:6387–6392.
  • Nie J, Cheng W, Peng Y, Liu G, Chen Y, Wang X, Liang C, Tao W, Wei Y, Zeng X. 2017. Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Deliv. 24:1124–1138.
  • Nosrati H, Rashidi N, Danafar H, Manjili HK. 2017b. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-017-0758-7.
  • Nosrati H, Salehiabar M, Attari E, Davaran S, Danafar H, Manjili HK. 2017d. Green and one‐pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl Organomet Chem. https://doi.org/10.1002/aoc.4069.
  • Nosrati H, Salehiabar M, Davaran S, Danafar H, Manjili HK. 2017c. Methotrexate-conjugated l-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm. DOI: 10.1080/03639045.2017.1417422.
  • Nosrati H, Salehiabar M, Davaran S, Ramazani A, Manjili HK, Danafar H. 2017e. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed. 43:7423–7442.
  • Nosrati H, Salehiabar M, Manjili HK, Danafar H, Davaran S. 2017a. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.10.180.
  • Nosrati H, Sefidi N, Sharafi A, Danafar H, Manjili HK. 2018. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg Chem. 76:501–509.
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. 2007. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2:751–760.
  • Rostami M, Aghajanzadeh M, Zamani M, Manjili HK, Danafar H. 2017. Sono-chemical synthesis and characterization of Fe3O4@ mTiO2-GO nanocarriers for dual-targeted colon drug delivery. Res Chem Intermediat. https://doi.org/10.1007/s11164-017-3204-0.
  • Salehiabar M, Nosrati H, Davaran S, Danafar H, Manjili HK. 2017. Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res. https://doi.org/10.1055/s-0043-120197.
  • Tao W, Zhang J, Zeng X, Liu D, Liu G, Zhu X, Liu Y, Yu Q, Huang L, Mei L. 2015. Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. Adv Healthcare Mater. 4:1203–1214.
  • Yu Y, Pang Z, Lu W, Yin Q, Gao H, Jiang X. 2012. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery. Pharm Res. 29:83–96.
  • Zamani M, Rostami M, Aghajanzadeh M, Manjili HK, Rostamizadeh K, Danafar H. 2018. Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J Mater Sci. 53:1634–1645.
  • Zeng X, Tao W, Mei L, Huang L, Tan C, Feng S-S. 2013. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials. 34:6058–6067.
  • Zeng X, Tao W, Wang Z, Zhang X, Zhu H, Wu Y, Gao Y, Liu K, Jiang Y, Huang L. 2015. Docetaxel‐loaded nanoparticles of dendritic amphiphilic block copolymer H40‐PLA‐b‐TPGS for cancer treatment. Part Part Syst Charact. 32:112–122.
  • Zhu D, Tao W, Zhang H, Liu G, Wang T, Zhang L, Zeng X, Mei L. 2016. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater. 30:144–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.