312
Views
10
CrossRef citations to date
0
Altmetric
Articles

Study of biodistribution and systemic toxicity of glucose functionalized SPIO/DOX micelles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 935-946 | Received 04 Aug 2018, Accepted 10 Jan 2019, Published online: 25 Jun 2019

References

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. 2009. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 61:428–437.
  • Ai H, Flask C, Weinberg B, Shuai X-T, Pagel MD, Farrell D, Duerk J, Gao J. 2005. Magnetite‐loaded polymeric micelles as ultrasensitive magnetic‐resonance probes. Adv Mater. 17:1949–1952.
  • Arami H, Khandhar A, Liggitt D, Krishnan KM. 2015. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 44:8576–8607.
  • Bao Y, Wen T, Samia ACS, Khandhar A, Krishnan KM. 2016. Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci. 51:513–553.
  • Blanco E, Shen H, Ferrari M. 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 33:941
  • Chen T, Qiu M, Zhang J, Sun H, Deng C, Zhong Z. 2018. Integrated multifunctional micelles co‐self‐assembled from polypeptides conjugated with natural ferulic acid and lipoic acid for doxorubicin delivery. ChemPhysChem. 19:2070–2077.
  • Cheng D, Hong G, Wang W, Yuan R, Ai H, Shen J, Liang B, Gao J, Shuai X. 2011. Nonclustered magnetite nanoparticle encapsulated biodegradable polymeric micelles with enhanced properties for in vivo tumor imaging. J Mater Chem. 21:4796–4804.
  • Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. 2012. Biological applications of magnetic nanoparticles. Chem Soc Rev. 41:4306–4334.
  • Doyle JJ, Neugut AI, Jacobson JS, Grann VR, Hershman DL. 2005. Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. J Clin Oncol. 23:8597–8605.
  • Duguet E, S, Vasseur S, Mornet J-M. Devoisselle 2006. Magnetic nanoparticles and their applications in medicine. Nanomedicine (Lond). 1:157–168.
  • Eawsakul K, Chinavinijkul P, Saeeng R, Chairoungdua A, Tuchinda P, Nasongkla N. 2017. Preparation and Characterizations of RSPP050-Loaded Polymeric Micelles Using Poly(ethylene glycol)-b-Poly(ε-caprolactone) and Poly(ethylene glycol)-b-Poly(D,L-lactide). Chem Pharm Bull. 65:530–537.
  • Esmaeilzadeh-Gharedaghi E, Ali Faramarzi M, Ali Amini M, Najafabadi AR, Rezayat SM, Amani A. 2012. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: an Artificial Neural Networks Study. Pharm Dev Technol. 17:638–647.
  • Gandon Y, Olivie D, Guyader D, Aube C, Oberti F, Sebille V, Deugnier Y. 2004. Non-invasive assessment of hepatic iron stores by MRI. Lancet. 363:357–362.
  • Herman EH, Zhang J, Ferrans VJ. 1994. Comparison of the protective effects of desferrioxamine and ICRF-187 against doxorubicin-induced toxicity in spontaneously hypertensive rats. Cancer Chemoth Pharm. 35:93–100.
  • Kabanov AV, Batrakova EV, Alakhov VY. 2002. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliver Rev. 54:759–779.
  • Kataoka K, Harada A, Nagasaki Y. 2001. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliver Rev. 47:113–131.
  • Li X, Li H, Yi W, Chen J, Liang B. 2013. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells. Int J Nanomedicine. 8:3019
  • Lv S, Li M, Tang Z, Song W, Sun H, Liu H, Chen X. 2013. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater. 9:9330–9342.
  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 65:271–284.
  • Man T, Sungkarat W, Nasongkla N. 2018. Synthesis and characterization of SPIO-loaded PEG-b-PS micelles as contrast agent for long-term nanoparticle-based MRI phantom. B Mater Sci. 41:42.
  • Mazumder A, Assawapanumat W, Dwivedi A, Reabroi S, Chairoungdua A, Nasongkla N. 2019. Glucose targeted therapy against liver hepatocellular carcinoma: In vivo study. J Drug Deliv Sci Tec. 49:502–512.
  • Moriwaki Y. 2014. Effects on uric acid metabolism of the drugs except the antihyperuricemics. J Bioequivalence Bioavailability. 6:10.
  • Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin S-F, Sherry AD, Boothman DA, Gao J. 2006. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6:2427–2430.
  • Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao J. 2004. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl. 43:6323–26327.
  • Organization. 2018 World Health. 'Cancer'. http://www.who.int/mediacentre/factsheets/fs297/en/.
  • Reddy LH, Arias JL, Nicolas J, Couvreur P. 2012. 'Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 112:5818–5878.
  • Shuai X, Ai H, Nasongkla N, Kim S, Gao J. 2004. Micellar Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 98:415–426.
  • Shubayev VI, Pisanic TR, 2009. Magnetic nanoparticles for theragnostics. Adv Drug Deliver Rev. 61:467–477. II, S. Jin
  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G. 2004. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 126:273–7279.
  • Szablewski L. 2013. Expression of glucose transporters in cancers. Biochim Biophys Acta. 1835:164–6169.
  • Theerasilp M, Nasongkla N. 2013. Comparative studies of poly (ɛ\neth-caprolactone) and poly (D, L-lactide) as core materials of polymeric micelles. J Microencapsul. 30:390-397.
  • Theerasilp M, Chalermpanapun P, Sunintaboon P, Sungkarat W, Nasongkla N. 2018. Glucose-installed biodegradable polymeric micelles for cancer-targeted drug delivery system: synthesis, characterization and in vitro evaluation. J Mater Sci Mater Med. 29:177
  • Theerasilp M, Sunintaboon P, Sungkarat W, Nasongkla N. 2017. Glucose-installed, SPIO-loaded PEG-b-PCL micelles as MR contrast agents to target prostate cancer cells. Appl Nanosci. 7:711–721.
  • Varshosaz J, Dehkordi AJ, Setayesh S. 2017. Magnetic polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol micelles for docetaxel delivery in breast cancer: an in vitro study on two cell lines of breast cancer. Pharm Dev Technol. 22:659–668.
  • Wang D, Bingbing L, Taipeng S, Jun W, Chunchao X, Bin S, Hua A. 2016. The effect of neighbor distance of magnetic nanoparticle clusters on magnetic resonance relaxation properties. Sci Bull. 61:1023–1030.
  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, et al. 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 168:176–185.
  • Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS. 2011. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 32:3435–3446.
  • Yang X, Deng W, Fu L, Blanco E, Gao J, Quan D, Shuai X. 2008. Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. J Biomed Mater Res A. 86:48–60.
  • Zhang S, Liu Y, Gan Y, Qiu N, Gu Y, Zhu H. 2019. Conjugates of TAT and folate with DOX-loaded chitosan micelles offer effective intracellular delivery ability. Pharm Dev Technol. 24:253–261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.