215
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Self-assembled nanoparticles of reduction-sensitive poly (lactic-co-glycolic acid)-conjugated chondroitin sulfate A for doxorubicin delivery: preparation, characterization and evaluation

, , , , , , & show all
Pages 794-802 | Received 30 Nov 2018, Accepted 21 Mar 2019, Published online: 16 May 2019

References

  • Albini A, Sporn MB. 2007. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 7:139–147.
  • Aminabhavi TM, Nadagouda MN, Joshi SD, More UA. 2014. Guar gum as platform for the oral controlled release of therapeutics. Expert Opin Drug Deliv. 11:753–766.
  • Banerjee R, Maiti S, Dey D, Dhara D. 2016. Polymeric nanostructures with pH-labile core for controlled drug release. J Colloid Interface Sci. 462:176–182.
  • Bang JY, Song CE, Kim C, Park WD, Cho KR, Kim PI, Lee SR, Chung WT, Choi KC. 2008 . Cytotoxicity of amphotericin B-incorporated polymeric micelles composed of poly(DL-lactide-co-glycolide)/dextran graft copolymer. Arch Pharm Res. 31:1463–1469.
  • Bui QN, Li Y, Jang MS, Huynh DP, Lee JH, Lee DS. 2015. Redox- and pH-sensitive polymeric micelles based on poly (β-amino ester)-grafted disulfide methylene oxide poly (ethylene glycol) for anticancer drug delivery. Macromolecules. 48:4046–4054.
  • Cao Y, Gao M, Chen C, Fan A, Zhang J, Kong D, Wang Z, Peer D, Zhao Y. 2015. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology. 26:115101.
  • Chang YC, Chu M. 2008. Methoxy poly (ethylene glycol)-b-poly(valerolactone) deblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur Polym J. 44:3922–3930.
  • Cheng R, Meng FH, Deng C, Klok HA, Zhong ZY. 2013. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 34:3647–3657.
  • Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, Yang JS, Kim S, Kim YK, Seong SY. 2011. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol. 6:675–682.
  • Dai J, Lin S, Cheng D, Zou S, Shuai X. 2011. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew Chem Int Ed Engl. 50:9404–9408.
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. 2012. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 161:505–522.
  • Deng C, Jiang YJ, Cheng R, Meng FH, Zhong ZY. 2012. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today. 7:467–480.
  • Deng B, Xia M, Qian J, Li R, Li L, Shen J, Li G, Xie Y. 2017. Calcium phosphate-reinforced reduction-sensitive hyaluronic acid micelles for delivering paclitaxel in cancer therapy. Mol Pharm. 14:1938–1949.
  • Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, Nadagouda MN, Aminabhavi TM. 2017. Polymeric micelles: basic research to clinical practice. Int J Pharm. 532:249–268.
  • Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. 2014. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release. 193:162–173.
  • Hu FQ, Liu LN, Du YZ, Yuan H. 2009. Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials. 30:6955–6963.
  • Huang P, Song H, Wang W, Sun Y, Zhou J, Wang XJ, Liu J, Liu J, Kong D, Dong A. 2014. Integrin-targeted zwitterionic polymeric nanoparticles with acid-induced disassembly property for enhanced drug accumulation and release in tumor. Biomacromolecules. 15:3128–3138.
  • Huang J, Zhang H, Yu Y, Chen Y, Wang D, Zhang G, Zhou G, Liu J, Sun Z, Sun D, et al. 2014. Biodegradable self-assembled nanoparticles of poly (D,L-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer. Biomaterials. 35:550–566.
  • Jeong YI, Kim DH, Chung CW, Yoo JJ, Choi KH, Kim CH, Ha SH, Kang DH. 2011. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer. Int J Nanomedicine. 6:1415–1427.
  • Khorsand B, Lapointe G, Brett C, Oh JK. 2013. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules. 14:2103–2111.
  • Lee J, Chung S, Cho H, Kim D. 2015. Phenylboronic acid‐decorated chondroitin sulfate A‐based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv Funct Mater. 2:3705–3717.
  • Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, Zhu Q, Waddad AY, Zhang Q. 2012. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 33:2310–2320.
  • Li SX, Liu L, Zhang LJ, Wu B, Wang CX, Zhou W, Zhuo RX, Huang SW. 2016. Synergetic enhancement of antitumor efficacy with charge reversal and reduction-sensitive polymer micelles. Polym Chem. 7:5113–5122.
  • Lim JJ, Hammoudi TM, Bratt-Leal AM, Hamilton SK, Kepple KL, Bloodworth NC, McDevitt TC, Temenoff JS. 2011. Development of nano- and microscale chondroitin sulfate particles for controlled growth factor delivery. Acta Biomater. 7:986–995.
  • Liu GY, Li M, Zhu CS, Jin Q, Zhang ZC, Ji J. 2014. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery. Macromol Biosci. 14:1280–1290.
  • Liu HX, Wu SQ, Yu JM, Fan D, Ren J, Zhang L, Zhao JG. 2017. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin. Mat Sci Eng C. 75:55–63.
  • Liu CY, Yuan J, Luo XM, Chen MH, Chen ZJ, Zhao YC, Li XH. 2014. Folate decorated and reduction-sensitive micelles assembled from amphiphilic polymer-camptothecin conjugates for intracellular drug delivery. Mol Pharmaceutics. 11:4258–4269.
  • Lotz S, Goderie S, Tokas N, Hirsch SE, Ahmad F, Corneo B, Le S, Banerjee A, Kane RS, Stern JH, et al. 2013. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with Biweekly feeding. PLOS One. 8:e56289.
  • Ma YC, Wang JX, Tao W, Sun CY, Wang YC, Li DD, Fan F, Qian HS, Yang XZ. 2015. Redox-responsive polyphosphoester-based micellar nanomedicines for overriding chemoresistance in breast cancer cells. ACS Appl Mater Interfaces. 7:26315–26325.
  • Maiti C, Parida S, Kayal S, Maiti S, Mandal M, Dhara D. 2018. Redox-responsive core-cross-linked block copolymer micelles for overcoming multidrug resistance in cancer cells. ACS Appl Mater Interfaces. 10:5318–5330.
  • Makadia HK, Siegel SJ. 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 3:1377–1397.
  • Owen SC, Chan DP, Shoichet MS. 2012. Polymeric micelle stability. Nano Today. 7:53–65.
  • Sah H, Thoma LA, Desu HR, Sah E, Wood GC. 2013. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine. 8:747–765.
  • Seow WY, Xue JM, Yang YY. 2007. Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials. 28:1730–1740.
  • Shen LH, Bao JF, Wang D, Wang YX, Chen ZW, Ren L, Zhou X, Ke XB, Chen M, Yang AQ. 2013. One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application. Nanoscale. 5:2133–2141.
  • Torchilin VP. 2001. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 73:137–172.
  • Venditti I. 2017. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: a review. J King Saud Univ – Science (In Press). https://doi.org/10.1016/j.jksus.2017.10.004
  • Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. 2010. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 31:908–915.
  • Wu SQ, Xie X, Cheng JX, Liu HX, Hu ZH, Ren J, Yu JM. 2018. Enhanced solubility and anticancer efficacy of curcumin by reduction-sensitive chondroitin sulfate A-ss-deoxycholic acid micelles. Lat Am J Pharm. 37:60–67.
  • Xu H, Yang D, Cai C, Gou J, Zhang Y, Wang L, Zhong H, Tang X. 2015. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Acta Biomater. 16:156–168.
  • Yamamoto T, Yokoyam M, Opanasopit P, Hayama A, Kawano K, Maitani Y. 2007. What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core. J Control Release. 123:11–18.
  • Yan Y, Wu W, Zhao W, Qi R, Cui D, Xie Z, Huang Y, Tong T, Jing X. 2012. Reduction sensitive core-cross-linked mPEG-poly(ester-carbonate) micelles for glutathione triggered intracellular drug release. Polym Chem. 3:2403–2412.
  • Yang S, Ren Z, Chen M, Wang Y, You B, Chen W, Qu C, Liu Y, Zhang X. 2017. Nucleolin-targeting AS1411-aptamer-modified graft polymeric micelle with dual pH/redox sensitivity designed to enhance tumor therapy through the codelivery of doxorubicin/TLR4 siRNA and suppression of invasion. Mol Pharm. 15:314–325.
  • Yu J, Xie X, Zheng M, Yu L, Zhang L, Zhao J, Jiang D, Che X. 2012. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin. Int J Nanomedicine. 7:5079–5090.
  • Yu J, Zhou Y, Chen W, Ren J, Zhang L, Lu L, Luo G, Huang H. 2015. Preparation, characterization and evaluation of α-tocopherol succinate-modified dextran micelles as potential drug carriers. Materials. 8:6685–6696.
  • Zhang P, Zhang H, He W, Zhao D, Song A, Luan Y. 2016. Disulfide-linked amphiphilic polymer-docetaxel conjugates assembled redox-sensitive micelles for efficient antitumor drug delivery. Biomacromolecules. 17:1621–1632.
  • Zhou Y, Yu J, Feng X, Li W, Wang Y, Jin H, Huang H, Liu Y, Fan D. 2016. Reduction responsive core-crosslinked micelles based on a glycol chitosan-lipoic acid conjugate for triggered release of doxorubicin. RSC Adv. 6:31391–31400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.