300
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Voriconazole-loaded self-nanoemulsifying drug delivery system (SNEDDS) to improve transcorneal permeability

, , , , &
Pages 694-703 | Received 27 Nov 2019, Accepted 14 Feb 2020, Published online: 21 Feb 2020

References

  • Adams AIH, Gosmann G, Schneider PH, Bergold AM. 2009. LC stability studies of voriconazole and structural elucidation of its major degradation product. Chroma. 69(S2):115–122.
  • Al-Badriyeh D, Li J, Stewart K, Kong DCM, Leung L, Davies GE, Fullinfaw R. 2009. Stability of extemporaneously prepared voriconazole ophthalmic solution. Am J Health Syst Pharm. 66(16):1478–1483.
  • Andrade LM, Rocha KAD, De Sá FAP, Marreto RN, Lima EM, Gratieri T, Taveira SF. 2016. Voriconazole-loaded nanostructured lipid carriers for ocular drug delivery. Cornea. 35(6):866–871.
  • Bachu R, Chowdhury P, Al-Saedi Z, Karla P, Boddu S. 2018. Ocular drug delivery barriers role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 10(1):28–31.
  • Bahloul B, Lassoued MA, Sfar S. 2014. A novel approach for the development and optimization of self emulsifying drug delivery system using HLB and response surface methodology: application to fenofibrate encapsulation. Int J Pharm. 466(1–2):341–348.
  • Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Rodriguez ADP, Solinis MA. 2016. Application of lipid nanoparticles to ocular drug delivery. Expert Opin Drug Deliv. 13(12):1743–1757.
  • Beg S, Swain S, Rahman M, Hasnain MS, Imam SS. 2019. Chapter 3: application of design of experiments (DoE) in pharmaceutical product and process optimization. In: Beg S, Hasnain MS, editors. Pharmaceutical quality by design. London: Academic press; p. 43–64.
  • Bhosale R, Bhandwalkar O, Duduskar A, Jadhav R, Pawar P. 2016. Water soluble chitosan mediated voriconazole microemulsion as sustained carrier for ophthalmic application: in vitro/ex vivo/in vivo evaluations. Open Pharm Sci J. 3(1):215–234.
  • Chandasana H, Prasad YD, Chhonker YS, Chaitanya TK, Mishra NN, Mitra K, Shukla PK, Bhatta RS. 2014. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: an approach to reduce dose and dosing frequency. Int J Pharm. 477(1–2):317–325.
  • Chaudhari KS, Akamanchi KG. 2019. Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility and bioavailability enhancement of efavirenz. Int J Pharm. 560:205–218.
  • Chen Y, Quan P, Liu X, Wang M, Fang L. 2014. Novel chemical permeation enhancers for transdermal drug delivery. Asian J Pharm Sci. 9(2):51–64.
  • Cornell J.A. 2011. A primer on experiments with mixtures. New York (NY): Wiley.
  • Cox DR. 1971. A note on polynomial response functions for mixtures. Biometrika. 58(1):155–159.
  • Craig DQM, Barker SA, Banning D, Booth SW. 1995. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int J Pharm. 114(1):103–110.
  • Dalvadi H, Patel N, Parmar K. 2017. Systematic development of design of experiments (DoE) optimised self-microemulsifying drug delivery system of Zotepine. J Microencapsul. 34(3):308–318.
  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh DF, Javanmard R, Dokhani A, Khorasani S, Mozafari M. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2):57.
  • De Sá FAP, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. 2015. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B. 133:331–338.
  • Elrebii M, Kamoun A, Boufi S. 2015. Waterborne hybrid alkyd–acrylic dispersion: optimization of the composition using mixture experimental designs. Prog Org Coat. 87:222–231.
  • Engelbrecht TN, Demé B, Dobner B, Neubert R. 2012. Study of the influence of the penetration enhancer isopropyl myristate on the nanostructure of stratum corneum lipid model membranes using neutron diffraction and deuterium labelling. Skin Pharmacol Physiol. 25(4):200–207.
  • European Pharmacopoeia Commission. 2017. Methods of preparation of sterile products: method 5.1.1. 50101. In: European pharmacopoeia. 9th ed. Strasbourg: European Directorate for the Quality of Medicines (EDQM).
  • Fanun M. 2010. Chapter 10: Microemulsion system: application in delivery of poorly soluble drugs. In: Fanun M, editors. Colloids in drug delivery. New York: Taylor and Francis; p. 245–265.
  • Ghadiri M, Fatemi S, Vatanara A, Doroud D, Najafabadi AR, Darabi M, Rahimi AA. 2012. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm. 424(1–2):128–137.
  • Goupy J, Creighton L. 2006. Introduction aux plans d’expériences [Introduction to design of experiments]. 3rd ed. Paris (France): Dunod/L’usine nouvelle.
  • Hariprasad SM, Mieler WF, Lin TK, Sponsel WE, Graybill JR. 2008. Voriconazole in the treatment of fungal eye infections: a review of current literature. Br J Ophthalmol. 92(7):871–878.
  • Harrington R, Lee E, Yang H, Wei J, Messali A, Azie N, Wu EQ, Spalding J. 2017. Cost-effectiveness analysis of isavuconazole vs. voriconazole as first-line treatment for invasive aspergillosis. Adv Ther. 34(1):207–220.
  • Hashemnejad SM, Badruddoza AZM, Zarket B, Castaneda CR, Doyle PS. 2019. Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat Commun. 10(1):1–10.
  • Heralgi MM, Badami A, Vokuda H, Venkatachalam K. 2016. An update on voriconazole in ophthalmology. DJO. 27(1):9–15.
  • Ibrahim SS. 2019. The role of surface active agents in ophthalmic drug delivery: a comprehensive review. J Pharm Sci. 108 (6):1923–1933.
  • Jiao J. 2008. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev. 60(15):1663–1673.
  • Katara R, Sachdeva S, Majumdar DK. 2018. Aceclofenac oil drops: characterization and evaluation against ocular inflammation. Pharm Dev Technol. 23(3):240–246.
  • Kaur IP, Smitha R. 2002. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm. 28(4):353–369.
  • Khatri P, Shao J. 2018. Mechanism and structural factors of lipid and surfactant in the formation of self-emulsified nanoemulsion. J Pharm Sci. 107(8):2198–2207.
  • Kumar R, Sinha VR. 2014. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf. B. 117:82–88.
  • Kundu P, Arora K, Gu Y, Kumar V, Mishra I M. 2019. Formation and stability of water‐in‐oil nano‐emulsions with mixed surfactant using in‐situ combined condensation‐dispersion method. Can J Chem Eng. 97(7):2039–2049.
  • Kuo MT, Chen JL, Hsu SL, Chen A, You HL. 2019. An omics approach to diagnosing or investigating fungal keratitis. IJMS. 20(15):3631.
  • Lamaallam S, Bataller H, Dicharry C, Lachaise J. 2005. Formation and stability of miniemulsions produced by dispersion of water/oil/surfactants concentrates in a large amount of water. Colloids Surf. A. 44:270–271.
  • Lassoued MA, Sfar S, Bouraoui A, Khemiss F. 2012. Absorption enhancement studies of clopidogrel hydrogen sulphate in rat everted gut sacs. J Pharm Pharmacol. 64(4):541–552.
  • Lawson J, Willden C. 2016. Mixture experiments in R using mixexp. J Stat Softw. 72(1):1–20.
  • Lefebvre G, Riou J, Bastiat G, Roger E, Frombach K, Gimel J-C, Saulnier P, Calvignac B. 2017. Spontaneous nano-emulsification: process optimization and modeling for the prediction of the nanoemulsion’s size and polydispersity. Int J Pharm. 534(1–2):220–228.
  • Maharana PK, Sharma N, Nagpal R, Jhanji V, Das S, Vajpayee RB. 2016. Recent advances in diagnosis and management of Mycotic keratitis. Indian J Ophthalmol. 64(5):346–357.
  • Mahmoudi S, Masoomi A, Ahmadikia K, Tabatabaei SA, Soleimani M, Rezaie S, Ghahvechian H, Banafsheafshan A. 2018. Fungal keratitis: an overview of clinical and laboratory aspects. Mycoses. 61(12):916–930.
  • Mathieu D, Phan-Tan-Luu R. 2001. Planification d’expériences en formulation: optimisation. Techniques de l’ingénieur. J. 2241:1–15.
  • McClements DJ. 2012. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 8(6):1719–1729.
  • Monti D, Chetoni P, Burgalassi S, Najarro M, Saettone MF. 2002. Increased corneal hydration induced by potential ocular penetration enhancers: assessment by differential scanning calorimetry (DSC) and by desiccation. Int J Pharm. 232(1–2):139–147.
  • Moore JW, Flanner HH. 1996. Mathematical comparison of dissolution profiles. Pharm Technol. 20:64–74.
  • Politis N, Colombo P, Colombo G, Rekkas M. 2017. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 43(6):889–901.
  • Prajna NV, Krishnan T, Rajaraman R, Patel S, Shah R, Srinivasan M, Devi L, Das M, Ray KJ, O’Brien KS, et al. 2017. Adjunctive oral voriconazole treatment of fusarium keratitis. JAMA Ophthalmol. 135(6):520–525.
  • Rais F, Jelidi A, Kamoun A, Chaabouni M, Sergent M, Phan-Tan-Luu R. 2004. Use of an ellipsoidal subregion of interest in the space of mixture components to the optimization of a fluoroanhydrite-based self-leveling floor composition. Chemom Intell Lab Syst. 74(2):253–261.
  • Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. 2017. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye – part I – barriers and determining factors in ocular delivery. Eur J Pharm Biopharm. 110:70–75.
  • Seyfoddin A, Al-Kassas R. 2013. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm. 39(4):508–519.
  • Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. 2007. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 66(2):227–243.
  • Sharma D, Maheshwari D, Philip G, Rana R, Bhatia S, Singh M, Gabrani R, Sharma SK, Ali J, Sharma RK. 2014. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using box-Behnken Design: In Vitro and In Vivo evaluation. Biomed Res Int. 2014:1–14.
  • Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O. 2009. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst. 26(5):427–521.
  • Soni V, Pandey V, Tiwari R, Asati S, Tekade RK. 2019. Chapter 13: design and evaluation of ophthalmic delivery formulations. In: Fundamentals of drug delivery. London: Academic press; p. 473–538.
  • Tauler R, Walczak B, Brown SD. 2009. Chapter 1.13: experimental design for mixture studies. In: Comprehensive chemometrics: chemical and biochemical data analysis. Slovenia, Elsevier; p. 391–449.
  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd E. 2013. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm. 443(1–2):293–305.
  • Thomas PA, Kaliamurthy J. 2013. Mycotic keratitis: epidemiology, diagnosis and management. Clin. Microbiol Infect. 19(3):210–220.
  • Üstündağ O, Yozgatlı N, Okur V, Yoltaş ME, Siafaka A, Panoraia I. 2019. Improving therapeutic efficacy of voriconazole against fungal keratitis: thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol. 49:323–333.
  • Vadlapudi AD, CholKAr K, Dasari SR, Mitra AK. 2015. Chapter 10: ocular drug delivery. In: Drug delivery. Burlington (MA): Jones & Bartlett; p. 219–263.
  • Vining GG, Cornell JA, Myers RH. 1993. A graphical approach for evaluating mixture designs. J R Stat Soc Ser C Appl Stat. 42(1):127–138.
  • Wang L, Dong J, Chen J, Eastoe J, Li X. 2009. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 330(2):443–448.
  • Washington N, Washington C, WIlson C. 2001. Chapter 11: ocular drug delivery. In: Physiological pharmaceutics: barriers to drug absorption. London, Taylors and Francis; p. 249–269.
  • Wooster TJ, Labbett D, Sanguansri P, Andrews H. 2016. Impact of microemulsion inspired approaches on the formation and destabilisation mechanisms of triglyceride nanoemulsions. Soft Matter. 12(5):1425–1435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.