121
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone

, , , , , , , & show all
Pages 291-301 | Received 16 Jan 2020, Accepted 16 Dec 2020, Published online: 25 Jan 2021

References

  • Aditya NP, Macedo AS, Doktorovova S, Souto EB, Kim S, Chang PS, Ko, S. 2014. Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT – Food Sci Technol. 59(1):115–121.
  • Agnaniet H, Mounzeo H, Menut C, Bessiere JM, Criton M. 2003. The essential oils of Rinorea subintegrifolia O. Flavour Fragr J. 18(3):207–210.
  • Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionic Ebersold M. 2017. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans. 46(37):12692–12704.
  • Bora C, Prabhu R, Patravale V. 2017. Lymphatic delivery: concept, challenges and applications. Indian Drugs. 54:5–22.
  • Brandão LFG, Alcantara GB, Matos M. d F C, Bogo D, Freitas D. d S, Oyama NM, Honda NK. 2013. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells. Chem Pharm Bull (Tokyo). 61(2):176–183.
  • Bruschi ML, de Toledo LAS. 2019. Pharmaceutical applications of iron-oxide magnetic nanoparticles. Magnetochemistry. 5(3):50.
  • Chandra D, Kohli G, Prasad K, Bisht G, Punetha VD, Khetwal K, Devrani MK, Pandey H. 2015. Phytochemical and ethnomedicinal uses of family violaceae. Curr Res Chem. 7(2):44–52.
  • Costa V, de Souza M, Fechine P, Macedo A, Gonçalves L. 2016. Nanobiocatalytic systems based on lipase-Fe3O4 and conventional systems for isoniazid synthesis: a comparative study. Braz J Chem Eng. 33(3):661–673.
  • Craik DJ, Malik U. 2013. Cyclotide biosynthesis. Curr Opin Chem Biol. 17(4):546–554.
  • Cura AJ, Carruthers A. 2011. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol. 2(2):863–914.
  • Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude R, Hassan P, Aswal V, Steiniger F, Thamm J, Fahr A. 2011. Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 8(3):716–726.
  • Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. 2017. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol. 43(4):493–507.
  • Elsheikh MA, Elnaggar YS, Gohar EY, Abdallah OY. 2012. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. Int J Nanomed. 7:3787–3802.
  • Gerlach SL, Göransson U, Kaas Q, Craik DJ, Mondal D, Gruber CW. 2013. A systematic approach to document cyclotide distribution in plant species from genomic, transcriptomic, and peptidomic analysis. Biopolymers. 100(5):433–437.
  • Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Mohamadyar F, Hosseinkhani H. 2017. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res. 105(10):2851–2864.
  • Hasanova U, Ramazanov M, Maharramov A, Gakhramanova Z, Hajiyeva S, Eyvazova Q, Vezirova L, Hajiyeva F, Hasanova M, Guliyeva N. 2016. Synthesis of macrocycle (MC)–mimics the properties of natural siderophores and preparation the nanostructures on the basis of MC and magnetite nanoparticles. Chem Eng Trans. 47:109–114.
  • Hiremath CG, Heggnnavar GB, Kariduraganavar MY, Hiremath MB. 2019. Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using pluronic-coated iron oxide nanoparticles. Prog Biomater. 8(3):155–168.
  • Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. 2015. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials. 39:105–113.
  • Imran M, Shah MR, Ullah F, Ullah S, Elhissi AM, Nawaz W, Ahmad F, Sadiq A, Ali I. 2016. Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin. Drug Deliv. 23(9):3653–3664.
  • Jabri T, Imran M, Aziz A, Rao K, Kawish M, Irfan M, Malik MI, Simjee SU, Arfan M, Shah MR. 2019. Design and synthesis of mixed micellar system for enhanced anticancer efficacy of paclitaxel through its co-delivery with naringin. Drug Dev Ind Pharm. 45(5):703–714.
  • Jabri T, Imran M, Shafiullah , Rao K, Ali I, Arfan M, Shah MR. 2018. Fabrication of lecithin-gum tragacanth muco-adhesive hybrid nano-carrier system for in-vivo performance of amphotericin B. Carbohydr Polym. 194:89–96.
  • Jeon O-C, Hwang SR, Al-Hilal TA, Park JW, Moon HT, Lee S, Park JH, Byun Y. 2013. Oral delivery of ionic complex of ceftriaxone with bile acid derivative in non-human primates. Pharm Res. 30(4):959–967.
  • Kaas Q, Craik DJ. 2010. Analysis and classification of circular proteins in CyBase. Biopolymers. 94(5):584–591.
  • Kanwal T, Kawish M, Maharjan R, Ghaffar I, Ali HS, Imran M, Perveen S, Saifullah S, Simjee SU, Shah MR. 2019. Design and development of permeation enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for ceftriaxone sodium improved oral pharmacokinetics. J Mol Liq. 289:111098.
  • Katara R, Sachdeva S, Majumdar, DK. 2019. Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery. Pharm Dev Technol. 24(3):368–379.
  • Katuwavila NP, Amarasekara Y, Jayaweera V, Rajaphaksha C, Gunasekara C, Perera IC, Amaratunga GAJ, Weerasinghe L. 2020. Graphene oxide–based nanocomposite for sustained release of cephalexin. J Pharm Sci. 109(2):1130–1135.
  • Kawish M, Elhissi A, Jabri T, Iqbal KM, Zahid H, Shah MR. 2020. Enhancement in oral absorption of ceftriaxone by highly functionalized magnetic iron oxide nanoparticles. Pharmaceutics. 12(6):492.
  • Kollipara S, Bende G, Agarwal N, Varshney B, Paliwal J. 2011. International guidelines for bioanalytical method validation: a comparison and discussion on current scenario. Chromatographia. 73(3-4):201–217.
  • Kovar D, Mala A, Mlcochova J, Kalina M, Fohlerova Z, Hlavacek A, Farka Z, Skladal P, Starcuk Z, Jirnik R, Slaby O, Hubalek J. 2017. Preparation and characterisation of highly stable iron oxide nanoparticles for magnetic resonance imaging. J Nanomater. 2017:8.
  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. 2008. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 108(6):2064–2110.
  • Lautenschläger C, Schmidt C, Fischer D, Stallmach A. 2014. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev. 71:58–76.
  • Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L. 2012. Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res. 14(6):920
  • Lee S, Kim SK, Lee DY, Chae SY, Byun Y. 2006. Pharmacokinetics of a new, orally available ceftriaxone formulation in physical complexation with a cationic analogue of bile acid in rats. Antimicrob Agents Chemother. 50(5):1869–1871.
  • Li J, Cha R, Zhang Y, Guo H, Long K, Gao P, Wang X, Zhou F, Jiang X. 2018. Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. J Mater Chem B. 6(40):6413–6423.
  • Liang J, Zhang X, Miao Y, Li J, Gan Y. 2017. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma. Int J Nanomedicine. 12:2033–2044.
  • Lombardo D, Kiselev MA, Caccamo MT. 2019. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019:1–26.
  • Niyomploy P, Chan LY, Harvey PJ, Poth AG, Colgrave ML, Craik DJ. 2018. Discovery and characterization of cyclotides from Rinorea species. J Nat Prod. 81(11):2512–2520.
  • Nosrati H, Rashidi N, Danafar H, Manjili HK. 2018. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3 O4 magnetic nanoparticles against breast cancer cell lines. J Inorg Organomet Polym. 28(3):1178–1186.
  • Owokotomo I, Ekundayo O, Oladosu I, Aboaba S. 2012. Analysis of the essential oils of leaves and stems of Crassocephalum crepidioides growing in south western Nigeria. Int J Chem. 4(2):34.
  • Pan Q, Lv Y, Williams GR, Tao L, Yang H, Li H, Zhu L. 2016. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr Polym. 151:812–820.
  • Patel N, Lalwani D, Gollmer S, Injeti E, Sari Y, Nesamony J. 2016. Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog Biomater. 5(2):117–133.
  • Patsula V, Horák D, Kučka J, Macková H, Lobaz V, Francová P, Herynek V, Heizer T, Páral P, Šefc L. 2019. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Sci Rep. 9(1):10765–10765.
  • Perveen A, Qaiser M. 2009. Pollen flora of Pakistan-LXI. Violaceae. Pak J Bot. 41(1):1–5.
  • Peshin T, Kar H. 2017. Isolation and characterization of beta-sitosterol-3-O-beta-D-glucoside from the extract of the flowers of Viola odorata. BJPR. 16(4):1–8.
  • Saad AM, Mohammed MM, Ghareeb MA, Ahmed WS, Farid MA. 2017. Chemical composition and antimicrobial activity of the essential oil of the leaves of Cupressus macrocarpa Hartweg. ex Gordon. J Appl Pharm Sci. 7(09):207–212.
  • Selim KK, Ha Y-S, Kim S-J, Chang Y, Kim T-J, Lee GH, Kang I-K. 2007. Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials. 28(4):710–716.
  • Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, Davaran S. 2017. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol. 45(1):6–17.
  • Siu FY, Ye S, Lin H, Li S. 2018. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: enhanced bioavailability and in vitro anti-inflammatory activity. Int J Nanomed. 13:4133–4144.
  • Solá RJ, Griebenow K. 2009. Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci. 98(4):1223–1245.
  • Stewart M, Bartholomew B, Currie F, Abbiw D, Latif Z, Sarker S, Nash R. 2000. Pyranoisoflavones from Rinorea welwitschii. Fitoterapia. 71(5):595–597.
  • Tokuoka T. 2008. Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences. J Plant Res. 121(3):253–260.
  • Tokuoka T, Tobe H. 2006. Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sens. str. J Plant Res. 119(6):599–616.
  • Vanitha V, Umadevi K, Vijayalakshmi K. 2011. Determination of bioactive components of Annona squamosa L leaf by GC-MS analysis. Int J Pharm Sci Drug Res. 3(4):309–312.
  • Wang Y, Wang S, Firempong CK, Zhang H, Wang M, Zhang Y, Zhu Y, Yu J, Xu X. 2017. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. Aaps Pharmscitech. 18(3):586–594.
  • Yallapu M, Foy S, Jain TK, Labhasetwar V. 2010. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm Res. 27(11):2283–2295.
  • Yang S-C, Paik S-Y-R, Ryu J, Choi K-O, Kang TS, Lee JK, Song CW, Ko S. 2014. Dynamic light scattering-based method to determine primary particle size of iron oxide nanoparticles in simulated gastrointestinal fluid. Food Chem. 161:185–191.
  • Zaki N M, Hafez M M. 2012. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS Pharmscitech. 13(2):411–421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.