317
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Silver nanoparticles obtained from Brazilian pepper extracts with synergistic anti-microbial effect: production, characterization, hydrogel formulation, cell viability, and in vitro efficacy

, , , , , , , ORCID Icon & show all
Pages 539-548 | Received 13 May 2020, Accepted 28 Feb 2021, Published online: 16 Mar 2021

References

  • Akhtar MS, Panwar J, Yun Y-S. 2013. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng. 1(6):591–602.
  • Alves LA, Freires IA, Pereira TM, Souza A, Lima EO, Castro RDd. 2013. Effect of Schinus terebinthifolius on Candida albicans growth kinetics, cell wall formation and micromorphology. Acta Odontol Scand. 71(3–4):965–971.
  • Andreani T, Kiill CP, de Souza ALR, Fangueiro JF, Doktorovová S, Garcia ML, Gramião MPD, Silva AM, Souto EB. 2015. Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology. J Therm Anal Calorim. 120(1):1001–1007.
  • Anjum S, Abbasi BH. 2016. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa. Int J Nanomedicine. 11:1663–1675.
  • Berbeć S, Żołądek S, Kulesza PJ, Pałys B. 2019. Silver nanoparticles stabilized by polyoxotungstates. Influence of the silver – Polyoxotungstate molar ratio on UV/Vis spectra and SERS characteristics. Electroanal Chem. 854:113537.
  • Bhui DK, Bar H, Sarkar P, Sahoo GP, De SP, Misra A. 2009. Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J Mol Liq. 145(1):33–37.
  • Bonatto CC, Silva LP. 2014. Higher temperatures speed up the growth and control the size and optoelectrical properties of silver nanoparticles greenly synthesized by cashew nutshells. Ind Crops Prod. 58:46–54.
  • Carvalho MG, Freire FD, Raffin FN, Aragão CFS, Moura TF. 2009. LC determination of gallic acid in preparations derived from Schinus terebinthifolius Raddi. Chroma. 69(S2):249–253.
  • da Rocha PS, de Araújo Boleti AP, do Carmo Vieira M, Carollo CA, da Silva DB, Estevinho LM, dos Santos EL, de Picoli Souza K. 2019. Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinus terebinthifolius Raddi. Comp Biochem Physiol C: Toxicol Pharmacol. 220:36–46.
  • da Silveira Guimarães B, Moraes JPS, Pereira DIS, Pessoa JD, Neto JTF, da Silva RRF. 2014. Síntese de nanoprata via química verde e caracterização por potencial zeta. J Biol Pharma Agric Manage. 10(1):72–79.
  • de Araujo AR, Ramos-Jesus J, de Oliveira TM, de Carvalho AMA, Nunes PHM, Daboit TC, Carvalho AP, Barroso MF, de Almeida MP, Plácido A, et al. 2019. Identification of Eschweilenol C in derivative of Terminalia fagifolia Mart. and green synthesis of bioactive and biocompatible silver nanoparticles. Ind Crops Prod. 137:52–65.
  • DiCiaula MC, Lopes GC, Scarminio IS, de Mello JCP. 2014. Optimization of solvent mixtures for extraction from bark of Schinus terebinthifolius by a statistical mixture-design technique and development of a UV-VIS spectrophotometric method for analysis of total polyphenols in the extract. Quím Nova. 37(1):158–163.
  • Diniz FR, Maia RCAP, Rannier L, Andrade LN, Chaud MV, da Silva CF, Corrêa CB, de Albuquerque Junior RLC, da Costa LP, Souto EB, et al. 2020. Silver nanoparticles-composing alginate/gelatin hydrogel improves wound healing in vivo. Nanomaterials. 10(2):390.
  • Fangueiro JF, Andreani T, Fernandes L, Garcia ML, Egea MA, Silva AM, Souto EB. 2014. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf B Biointerfaces. 123:452–460.
  • Fangueiro JF, Calpena AC, Clares B, Andreani T, Egea MA, Veiga FJ, Garcia ML, Silva AM, Souto EB. 2016. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): in vivo, in vitro and ex vivo studies. Int J Pharm. 502(1–2):161–169.
  • Fangueiro JF, Parra A, Silva AM, Egea MA, Souto EB, Garcia ML, Calpena AC. 2014. Validation of a high performance liquid chromatography method for the stabilization of epigallocatechin gallate. Int J Pharm. 475(1–2):181–190.
  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 6(1):103–109.
  • Feng QL, Wu J, Chen G, Cui F, Kim T, Kim J. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 52(4):662–668.
  • Fleger Y, Rosenbluh M. 2009. Surface plasmons and surface enhanced raman spectra of aggregated and alloyed gold-silver nanoparticles. Res Lett Optics. 2009:1–5.
  • Gehrke ITS, Neto AT, Pedroso M, Mostardeiro CP, Da Cruz IBM, Silva UF, Ilha V, Dalcol II, Morel AF. 2013. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae). J Ethnopharmacol. 148(2):486–491.
  • Guzzo da Silva B, Frattini Fileti AM, Pereira Taranto O. 2015. Drying of Brazilian pepper-tree fruits (Schinus terebinthifolius Raddi): development of classical models and artificial neural network approach. Chem Eng Commun. 202(8):1089–1097.
  • Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. 2019. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 9(1):13071.
  • Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM. 2007. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum. 78(1):013705.
  • Hsu S, Bollag WB, Lewis J, Huang Q, Singh B, Sharawy M, Yamamoto T, Schuster G. 2003. Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes. J Pharmacol Exp Ther. 306(1):29–34.
  • ISO. 2009. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. Genava (Switzerland): ISO; [accessed on 2020 February 24]. https://www.iso.org/standard/36406.html
  • Jalilian F, Chahardoli A, Sadrjavadi K, Fattahi A, Shokoohinia Y. 2020. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv Powder Technol. 31(3):1323–1332.
  • Jayaprakash V, Palempalli UMD. 2019. Studying the effect of biosilver nanoparticles on polyethylene degradation. Appl Nanosci. 9(4):491–504.
  • Jebril S, Khanfir Ben Jenana R, Dridi C. 2020. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: in vitro and in vivo. Mater Chem Phys. 248:122898.
  • Jha AK, Prasad K, Kumar V, Prasad K. 2009. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog. 25(5):1476–1479.
  • Lins R, Vasconcelos F, Leite R, Coelho-Soares R, Barbosa D. 2013. Avaliação clínica de bochechos com extratos de Aroeira (Schinus terebinthifolius) e Camomila (Matricaria recutita L.) sobre a placa bacteriana e a gengivite. Rev Bras Plantas Med. 15(1):112–120.
  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 5(4):916–924.
  • Macedo JLSd, Santos JB. 2005. Bacterial and fungal colonization of burn wounds. J Memórias Mem Inst Oswaldo Cruz. 100(5):535–539.
  • Martínez Guerra MJ, López Barreiro M, Morejón Rodríguez Z, Rubalcaba Y. 2000. Actividad antimicrobiana de un extracto fluido al 80% de Schinus terebinthifolius raddi (copal). J Revista Cubana de Plantas Medicinales. 5:23–25.
  • Masum MMI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B. 2019. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front Microbiol. 10(820):820.
  • Melo GBd. 2015. Síntese verde e caracterização de nanopartículas de prata usando extrato aquoso de erva mate (Ilex paraguariensis). Pato Branco (Brazil): Universidade Tecnológica Federal do Paraná.
  • Oliveira MBS, Valentim IB, Rocha TS, Santos JC, Pires KSN, Tanabe ELL, Borbely KSC, Borbely AU, Goulart MOF. 2020. Schinus terebenthifolius Raddi extracts: from sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. Ind Crops Prod. 152:112503.
  • Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, et al. 2018. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 13(1):65–71.
  • Rescignano N, Hernandez R, Lopez LD, Calvillo I, Kenny JM, Mijangos C. 2016. Preparation of alginate hydrogels containing silver nanoparticles: a facile approach for antibacterial applications. Polym Int. 65(8):921–926.
  • Rosas EC, Correa LB, Pádua TA, Costa TEMM, Luiz Mazzei J, Heringer AP, Bizarro CA, Kaplan MAC, Figueiredo MR, Henriques MG. 2015. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J Ethnopharmacol. 175:490–498.
  • Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, et al. 2020. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 10(2):292.
  • Shehzad A, Qureshi M, Jabeen S, Ahmad R, Alabdalall AH, Aljafary MA, Al-Suhaimi E. 2018. Synthesis, characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. PeerJ. 6:e6086.
  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. 2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18(22):225103.
  • Silva AB, Silva T, Franco ES, Rabelo SA, Lima ER, Mota RA, da Câmara CAG, Pontes-Filho NT, Lima-Filho JV. 2010. Antibacterial activity, chemical composition, and cytotoxicity of leaf’s essential oil from Brazilian pepper tree (Schinus terebinthifolius, Raddi). Braz J Microbiol. 41(1):158–163.
  • Silva AM, Martins-Gomes C, Souto EB, Schäfer J, Santos JA, Bunzel M, Nunes FM. 2020. Thymus zygis subsp. zygis an endemic Portuguese plant: phytochemical profiling, antioxidant, anti-proliferative and anti-inflammatory activities. Antioxidants. 9(6):482.
  • Silva L, Bonatto C, Pereira F, Silva L, Albernaz V, Polez V. 2017. Nanotecnologia verde para síntese de nanopartículas metálicas. Biotecnologia Aplicada à Agro&Indústria. 4:967–1012.
  • Souto EB, da Ana R, Souto SB, Zielińska A, Marques C, Andrade LN, Horbańczuk OK, Atanasov AG, Lucarini M, Durazzo A, et al. 2020. In vitro characterization, modelling, and antioxidant properties of polyphenon-60 from green tea in Eudragit S100-2 chitosan microspheres. Nutrients. 12(4):967.
  • Souto EB, Doktorovova S, Zielinska A, Silva AM. 2019. Key production parameters for the development of solid lipid nanoparticles by high shear homogenization. Pharm Dev Technol. 24(9):1181–1185.
  • Souto EB, Fernandes AR, Coutinho TE, Martins-Gomes C, Durazzo A, Lucarini M, Souto SB, Silva AM, Santini A. 2020. Nanomaterials for skin anti-aging. Appl Sci. 10(5):1594.
  • Souto EB, Ribeiro AF, Ferreira MI, Teixeira MC, Shimojo AAM, Soriano JL, Naveros BC, Durazzo A, Lucarini M, Souto SB, et al. 2020. New nanotechnologies for the treatment and repair of skin burns infections. Int J Mol Sci. 21(2):393.
  • Souto EB, Souto SB, Zielinska A, Durazzo A, Lucarini M, Santini A, Horbańczuk OK, Atanasov AG, Marques C, Andrade LN, et al. 2020. Perillaldehyde 1,2-epoxide loaded SLN-tailored mAb: production, physicochemical characterization and in vitro cytotoxicity profile in MCF-7 cell lines. Pharmaceutics. 12(2):161.
  • Souto EB, Zielinska A, Souto SB, Durazzo A, Lucarini M, Santini A, Silva AM, Atanasov AG, Marques C, Andrade LN, et al. 2020. Limonene 1,2-epoxide-loaded SLN: evaluation of drug release, antioxidant activity and cytotoxicity in HaCaT cell line. Int J Mol Sci. 21(4):1449.
  • Syed Najmuddin SUF, Romli MF, Hamid M, Alitheen NB, Nik Abd Rahman NMA. 2016. Anti-cancer effect of Annona muricata Linn leaves crude extract (AMCE) on breast cancer cell line. BMC Complement Altern Med. 16(1):311.
  • Uliana MP, Fronza M, da Silva AG, Vargas TS, de Andrade TU, Scherer R. 2016. Composition and biological activity of Brazilian rose pepper (Schinus terebinthifolius Raddi) leaves. Ind Crops Prod. 83:235–240.
  • Wang P, Henning SM, Heber D. 2010. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One. 5(4):e10202.
  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S. 2016. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 17(9):1534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.