88
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-dimensional population balance model development using a breakage mode probability kernel for prediction of multiple granule attributes

, , &
Pages 638-649 | Received 04 Mar 2023, Accepted 26 Jun 2023, Published online: 12 Jul 2023

References

  • Ansari MA, Stepanek F. 2008. The effect of granule microstructure on dissolution rate. Powder Technol. 181(2):104–114. doi: 10.1016/j.powtec.2006.12.012.
  • Barrasso D, El Hagrasy A, Litster JD, Ramachandran R. 2015. Multi-dimensional population balance model development and validation for a twin screw granulation process. Powder Technol. 270:612–621. doi: 10.1016/j.powtec.2014.06.035.
  • Barrasso D, Oka S, Muliadi A, Litster JD, Wassgren C, Ramachandran R. 2013. Population balance model validation and predictionof cqas for continuous milling processes: toward qbdin pharmaceutical drug product manufacturing. J Pharm Innov. 8(3):147–162. doi: 10.1007/s12247-013-9155-0.
  • Barrasso D, Ramachandran R. 2012. A comparison of model order reduction techniques for a four-dimensional population balance model describing multi-component wet granulation processes. Chem Eng Sci. 80:380–392. doi: 10.1016/j.ces.2012.06.039.
  • Barrasso D, Tamrakar A, Ramachandran R. 2014. A reduced order pbm–ann model of a multi-scale pbm–dem description of a wet granulation process. Chem Eng Sci. 119:319–329. doi: 10.1016/j.ces.2014.08.005.
  • Bilgili E, Scarlett B. 2005. Population balance modeling of non-linear effects in milling processes. Powder Technol. 153(1):59–71. doi: 10.1016/j.powtec.2005.02.005.
  • Boukouvala F, Gao Y, Muzzio F, Ierapetritou MG. 2013. Reduced-order discrete element method modeling. Chem Eng Sci. 95:12–26. doi: 10.1016/j.ces.2013.01.053.
  • Capece M, Bilgili E, Dave R. 2011. Identification of the breakage rate and distribution parameters in a non-linear population balance model for batch milling. Powder Technol. 208(1):195–204. doi: 10.1016/j.powtec.2010.12.019.
  • Capece M, Bilgili E, Davé RN. 2014. Formulation of a physically motivated specific breakage rate parameter for ball milling via the discrete element method. AIChE J. 60(7):2404–2415. doi: 10.1002/aic.14451.
  • Capece M, Davé R, Bilgili E. 2018. A pseudo-coupled dem–non-linear pbm approach for simulating the evolution of particle size during dry milling. Powder Technol. 323:374–384. doi: 10.1016/j.powtec.2017.10.008.
  • Chaudhury A, Kapadia A, Prakash AV, Barrasso D, Ramachandran R. 2013. An extended cell-average technique for a multi-dimensional population balance of granulation describing aggregation and breakage. Adv Powder Technol. 24(6):962–971. doi: 10.1016/j.apt.2013.01.006.
  • Chu KR, Lee E, Jeong SH, Park ES. 2012. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch Pharm Res. 35(7):1187–1195. doi: 10.1007/s12272-012-0709-3.
  • Courant R, Friedrichs K, Lewy H. 1967. On the partial difference equations of mathematical physics. IBM J Res & Dev. 11(2):215–234. doi: 10.1147/rd.112.0215.
  • Dan A, Kotamarthy L, Ramachandran R. 2022. Understanding the effects of process parameters and material properties on the breakage mechanisms and regimes of a milling process. Chem Eng Res Des. 188:607–619. doi: 10.1016/j.cherd.2022.10.015.
  • de Koster SA, Pitt K, Litster JD, Smith RM. 2019. High-shear granulation: an investigation into the granule consolidation and layering mechanism. Powder Technol. 355:514–525. doi: 10.1016/j.powtec.2019.07.076.
  • Fda U. 2009. Guidance for industry. q8 (r2) pharmaceutical development. Maryland: food and Drug Administration.
  • Hill PJ, Ng KM. 1996. Statistics of multiple particle breakage. AIChE J. 42(6):1600–1611. doi: 10.1002/aic.690420611.
  • Iveson SM. 2002. Limitations of one-dimensional population balance models of wet granulation processes. Powder Technol. 124(3):219–229. doi: 10.1016/S0032-5910(02)00026-8.
  • Kašpar O, Tokárová V, Oka S, Sowrirajan K, Ramachandran R, Štěpánek F. 2013. Combined uv/vis and micro-tomography investigation of acetaminophen dissolution from granules. Int J Pharm. 458(2):272–281. doi: 10.1016/j.ijpharm.2013.10.032.
  • Kotamarthy L, Metta N, Ramachandran R. 2020. Understanding the effect of granulation and milling process parameters on the quality attributes of milled granules. Processes. 8(6):683. doi: 10.3390/pr8060683.
  • Krishna KB, Prabhakar C. 2011. A review on nanosuspensions in drug delivery. Int J Pharma and Bio Sci. 2(1):549–558.
  • Metta N, Ierapetritou M, Ramachandran R. 2018a. A multiscale dem-pbm approach for a continuous comilling process using a mechanistically developed breakage kernel. Chem Eng Sci. 178:211–221. doi: 10.1016/j.ces.2017.12.016.
  • Metta N, Verstraeten M, Ghijs M, Kumar A, Schafer E, Singh R, De Beer T, Nopens I, Cappuyns P, Van Assche I, et al. 2018b. Model development and prediction of particle size distribution, density and friability of a comilling operation in a continuous pharmaceutical manufacturing process. Int J Pharm. 549(1-2):271–282. doi: 10.1016/j.ijpharm.2018.07.056.
  • Mirtič A, Reynolds GK. 2016. Determination of breakage rate and breakage mode of roller compacted pharmaceutical materials. Powder Technol. 298:99–105. doi: 10.1016/j.powtec.2016.04.033.
  • Mosharraf M, Nyström C. 1995. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm. 122(1-2):35–47. doi: 10.1016/0378-5173(95)00033-F.
  • Murugesu B. 2008. Milling. In: Augsburger LL, Hoag SW, editors. Pharmaceutical dosage forms-tablets. CRC Press; p. 191–210.
  • Muthancheri I, Ramachandran R. 2021. A hybrid model to predict formulation dependent granule growth in a bi-component wet granulation process. Pharmaceutics. 13(12):2063. doi: 10.3390/pharmaceutics13122063.
  • Naik S, Chaudhuri B. 2015. Quantifying dry milling in pharmaceutical processing: a review on experimental and modeling approaches. J Pharm Sci. 104(8):2401–2413. doi: 10.1002/jps.24512.
  • Oka S, Kašpar O, Tokárová V, Sowrirajan K, Wu H, Khan M, Muzzio F, Štěpánek F, Ramachandran R. 2015. A quantitative study of the effect of process parameters on key granule characteristics in a high shear wet granulation process involving a two component pharmaceutical blend. Adv Powder Technol. 26(1):315–322. doi: 10.1016/j.apt.2014.10.012.
  • Oka S, Smrčka D, Kataria A, Emady H, Muzzio F, Štěpánek F, Ramachandran R. 2017. Analysis of the origins of content non-uniformity in high-shear wet granulation. Int J Pharm. 528(1–2):578–585. doi: 10.1016/j.ijpharm.2017.06.034.
  • Olaleye B, Wu CY, Liu LX. 2020. Impact of feed material properties on the milling of pharmaceutical ribbons: a pbm analysis. Int J Pharm. 590:119954. doi: 10.1016/j.ijpharm.2020.119954.
  • Pistikopoulos EN, Barbosa-Povoa A, Lee JH, Misener R, Mitsos A, Reklaitis GV, Venkatasubramanian V, You F, Gani R. 2021. Process systems engineering–the generation next? Comput Chem Eng. 147:107252. doi: 10.1016/j.compchemeng.2021.107252.
  • Ramachandran R, Barton PI. 2010. Effective parameter estimation within a multi-dimensional population balance model framework. Chem Eng Sci. 65(16):4884–4893. doi: 10.1016/j.ces.2010.05.039.
  • Ramachandran R, Immanuel CD, Stepanek F, Litster JD, Doyle IF. 2009. A mechanistic model for breakage in population balances of granulation: theoretical kernel development and experimental validation. Chem Eng Res Des. 87(4):598–614. doi: 10.1016/j.cherd.2008.11.007.
  • Ramkrishna D, Mahoney AW. 2002. Population balance modeling. promise for the future. Chem Eng Sci. 57(4):595–606. doi: 10.1016/S0009-2509(01)00386-4.
  • Reynolds GK. 2010. Modelling of pharmaceutical granule size reduction in a conical screen mill. Chem Eng J. 164(2–3):383–392. doi: 10.1016/j.cej.2010.03.041.
  • Sam T, Ernest TB, Walsh J, Williams JL, Initiative EPF, et al. 2012. A benefit/risk approach towards selecting appropriate pharmaceutical dosage forms–an application for paediatric dosage form selection. Int J Pharm. 435(2):115–123. doi: 10.1016/j.ijpharm.2012.05.024.
  • Samanta A, Ng K, Heng P. 2012. Cone milling of compacted flakes: process parameter selection by adopting the minimal fines approach. Int J Pharm. 422(1–2):17–23. doi: 10.1016/j.ijpharm.2011.10.015.
  • Schenck LR, Plank RV. 2008. Impact milling of pharmaceutical agglomerates in the wet and dry states. Int J Pharm. 348(1-2):18–26. doi: 10.1016/j.ijpharm.2007.07.029.
  • Tao J, Pandey P, Bindra DS, Gao JZ, Narang AS. 2015. Evaluating scale-up rules of a high-shear wet granulation process. J Pharm Sci. 104(7):2323–2333. doi: 10.1002/jps.24504.
  • Thiel W, Nguyen L. 1982. Fluidized bed granulation of an ordered powder mixture. J Pharm Pharmacol. 34(11):692–699. doi: 10.1111/j.2042-7158.1982.tb06202.x.
  • Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J R Statis Soc. 58(1):267–288.
  • Vanarase A, Aslam R, Oka S, Muzzio F. 2015. Effects of mill design and process parameters in milling dry extrudates. Powder Technol. 278:84–93. doi: 10.1016/j.powtec.2015.02.021.
  • Varinot C, Hiltgun S, Pons MN, Dodds J. 1997. Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill. Chem Eng Sci. 52(20):3605–3612. doi: 10.1016/S0009-2509(97)89693-5.
  • Vdović N, Jurina I, Škapin SD, Sondi I. 2010. The surface properties of clay minerals modified by intensive dry milling—revisited. Appl Clay Sci. 48(4):575–580. doi: 10.1016/j.clay.2010.03.006.
  • Vogel L, Peukert W. 2003. Breakage behaviour of different materials—Construction of a mastercurve for the breakage probability. Powder Technol. 129(1–3):101–110. doi: 10.1016/S0032-5910(02)00217-6.
  • Vogel L, Peukert W. 2005. From single particle impact behaviour to modelling of impact mills. Chem Eng Sci. 60(18):5164–5176. doi: 10.1016/j.ces.2005.03.064.
  • Wong TT, Yeh PY. 2020. Reliable accuracy estimates from k-fold cross validation. IEEE Trans Knowl Data Eng. 32(8):1586–1594. doi: 10.1109/TKDE.2019.2912815.
  • Yu LX. 2008. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 25(4):781–791. doi: 10.1007/s11095-007-9511-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.