177
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

A systematic review of emerging technologies to enhance the treatment of ovarian cancer

, , ORCID Icon & ORCID Icon
Pages 660-677 | Received 29 Mar 2023, Accepted 03 Jul 2023, Published online: 19 Jul 2023

References

  • Abriata JP, Turatti RC, Luiz MT, Raspantini GL, Tofani LB, do Amaral RLF, Swiech K, Marcato PD, Marchetti JM. 2019. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles. Mater Sci Eng C Mater Biol Appl. 96:347–355. doi: 10.1016/j.msec.2018.11.035.
  • Adepu S, Ramakrishna S. 2021. Controlled drug delivery systems: current status and future directions. Molecules. 26(19):5905. doi: 10.3390/molecules26195905.
  • Ak G, Yilmaz H, Güneş A, Hamarat Sanlier S. 2018. In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy. Artif Cells Nanomed Biotechnol. 46(Suppl 1):926–937. doi: 10.1080/21691401.2018.1439838.
  • Amoozgar Z, Wang L, Brandstoetter T, Wallis SS, Wilson EM, Goldberg MS. 2014. Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model. Biomacromolecules. 15(11):4187–4194. doi: 10.1021/bm5011933.
  • Aqil F, Jeyabalan J, Agrawal AK, Kyakulaga AH, Munagala R, Parker L, Gupta RC. 2017. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct. 8(11):4100–4107. doi: 10.1039/c7fo00882a.
  • Arora HC, Jensen MP, Yuan Y, Wu A, Vogt S, Paunesku T, Woloschak GE. 2012. Nanocarriers enhance Doxorubicin uptake in drug-resistant ovarian cancer cells [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Cancer Res. 72(3):769–778. doi: 10.1158/0008-5472.CAN-11-2890.
  • Asoodeh A, Ghorani-Azam A, Chamani J. 2012. Identification and characterization of novel antibacterial peptides from skin secretions of Euphlyctis cyanophlyctis. Int J Pept Res Ther. 18(2):107–115. doi: 10.1007/s10989-011-9284-6.
  • Asoodeh A, Sepahi S, Ghorani-Azam A. 2014. Purification and modeling amphipathic alpha helical antimicrobial peptides from skin secretions of Euphlyctis cyanophlyctis. Chem Biol Drug Des. 83(4):411–417. doi: 10.1111/cbdd.12256.
  • Bhattacharya S, Anjum MM, Patel KK. 2022. Gemcitabine cationic polymeric nanoparticles against ovarian cancer: formulation, characterization, and targeted drug delivery. Drug Deliv. 29(1):1060–1074. doi: 10.1080/10717544.2022.2058645.
  • Brunetti J, Pillozzi S, Falciani C, Depau L, Tenori E, Scali S, Lozzi L, Pini A, Arcangeli A, Menichetti S, et al. 2015. Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug. Sci Rep. 5:17736. doi: 10.1038/srep17736.
  • Byeon Y, Lee JW, Choi WS, Won JE, Kim GH, Kim MG, Wi TI, Lee JM, Kang TH, Jung ID, et al. 2018. CD44-targeting PLGA nanoparticles incorporating paclitaxel and FAK siRNA overcome chemoresistance in epithelial ovarian cancer. Cancer Res. 78(21):6247–6256. doi: 10.1158/0008-5472.CAN-17-3871.
  • Chahibi Y, Akyildiz IF, Balasubramaniam S, Koucheryavy Y. 2015. Molecular communication modeling of antibody-mediated drug delivery systems. IEEE Trans Biomed Eng. 62(7):1683–1695. doi: 10.1109/TBME.2015.2400631.
  • Chen Y, Xu M, Guo Y, Tu K, Wu W, Wang J, Tong X, Wu W, Qi L, Shi D. 2017. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle. Nanotechnology. 28(2):025101. doi: 10.1088/0957-4484/28/2/025101.
  • Cocco E, Deng Y, Shapiro EM, Bortolomai I, Lopez S, Lin K, Bellone S, Cui J, Menderes G, Black JD, et al. 2017. Dual-targeting nanoparticles for in vivo delivery of suicide genes to chemotherapy-resistant ovarian cancer cells [Research Support, Non-U.S. Gov’t Research Support, N.I.H., Extramural]. Mol Cancer Ther. 16(2):323–333. doi: 10.1158/1535-7163.MCT-16-0501.
  • Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Gois JR, Gil MH. 2010. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J. 1(1):164–209. doi: 10.1007/s13167-010-0001-x.
  • Desale SS, Soni KS, Romanova S, Cohen SM, Bronich TK. 2015. Targeted delivery of platinum-taxane combination therapy in ovarian cancer [Research Support, N.I.H., Extramural]. J Control Release. 220(Pt B):651–659. doi: 10.1016/j.jconrel.2015.09.007.
  • Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V. 2018. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv. 25(1):517–532. doi: 10.1080/10717544.2018.1435747.
  • Dharap SS, Qiu B, Williams GC, Sinko P, Stein S, Minko T. 2003. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides [Research Support, Non-U.S. Gov’t]. J Control Release. 91(1–2):61–73. doi: 10.1016/s0168-3659(03)00209-8.
  • Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. 2017. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors [Review]. Int J Nanomedicine. 12:7291–7309. doi: 10.2147/IJN.S146315.
  • Duska LR, Krasner CN, O'Malley DM, Hays JL, Modesitt SC, Mathews CA, Moore KN, Thaker PH, Miller A, Purdy C, et al. 2021. A phase Ib/II and pharmacokinetic study of EP0057 (formerly CRLX101) in combination with weekly paclitaxel in patients with recurrent or persistent epithelial ovarian, fallopian tube, or primary peritoneal cancer [Clinical Trial, Phase I Clinical Trial, Phase II Research Support, Non-U.S. Gov’t]. Gynecol Oncol. 160(3):688–695. doi: 10.1016/j.ygyno.2020.12.025.
  • Fan L, Chen J, Zhang X, Liu Y, Xu C. 2014. Follicle-stimulating hormone polypeptide modified nanoparticle drug delivery system in the treatment of lymphatic metastasis during ovarian carcinoma therapy. Gynecol Oncol. 135(1):125–132. doi: 10.1016/j.ygyno.2014.06.030.
  • Florinas S, Kim J, Nam K, Janat-Amsbury MM, Kim SW. 2014. Ultrasound-assisted siRNA delivery via arginine-grafted bioreducible polymer and microbubbles targeting VEGF for ovarian cancer treatment [Research Support, N.I.H., Extramural]. J Control Release. 183:1–8. doi: 10.1016/j.jconrel.2014.03.025.
  • Frank D, Indermun S, Govender M, Kumar P, Choonara YE, Du Toit LC, Pillay V. 2019. Antineoplastic nano-lipobubbles for passively targeted ovarian cancer therapy. Colloids Surf B. 177:160–168. doi: 10.1016/j.colsurfb.2019.01.049.
  • Fujiwara S, Nawa A, Luo C, Kamakura M, Goshima F, Kondo C, Kiyono T, Kikkawa F, Nishiyama Y. 2011. Carrier cell-based delivery of replication-competent HSV-1 mutants enhances antitumor effect for ovarian cancer [Research Support, Non-U.S. Gov’t]. Cancer Gene Ther. 18(2):77–86. doi: 10.1038/cgt.2010.53.
  • Ghafoorianfar S, Ghorani-Azam A, Mohajeri SA, Farzin D. 2020. Efficiency of nanoparticles for treatment of ocular infections: systematic literature review. J Drug Deliv Sci Technol. 57:101765. doi: 10.1016/j.jddst.2020.101765.
  • Ghareghomi S, Ahmadian S, Zarghami N, Hemmati S. 2021. hTERT-molecular targeted therapy of ovarian cancer cells via folate-functionalized PLGA nanoparticles co-loaded with MNPs/siRNA/wortmannin. Life Sci. 277:119621. doi: 10.1016/j.lfs.2021.119621.
  • Ghassami E, Varshosaz J, Jahanian-Najafabadi A, Minaiyan M, Rajabi P, Hayati E. 2018. Pharmacokinetics and in vitro/in vivo antitumor efficacy of aptamer-targeted Ecoflex((R)) nanoparticles for docetaxel delivery in ovarian cancer. Int J Nanomedicine. 13:493–504. doi: 10.2147/IJN.S152474.
  • Ghorani-Azam A, Balali-Mood M, Aryan E, Karimi G, Riahi-Zanjani B. 2018. Effect of amino acid substitution on biological activity of cyanophlyctin-β and brevinin-2R. J Mol Struct. 1158:14–18. doi: 10.1016/j.molstruc.2018.01.015.
  • Goldberg MS, Xing D, Ren Y, Orsulic S, Bhatia SN, Sharp PA. 2011. Nanoparticle-mediated delivery of siRNA targeting Parp1 extends survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A. 108(2):745–750. doi: 10.1073/pnas.1016538108.
  • Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S. 2013. Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Sci Rep. 3:2953. doi: 10.1038/srep02953.
  • Guo L, Zhang Y, Yang Z, Peng H, Wei R, Wang C, Feng M. 2019. Tunneling nanotubular expressways for ultrafast and accurate M1 macrophage delivery of anticancer drugs to metastatic ovarian carcinoma [Research Support, Non-U.S. Gov’t]. ACS Nano. 13(2):1078–1096. doi: 10.1021/acsnano.8b08872.
  • Guo T, Zhu Y, Yue M, Wang F, Li Z, Lin M. 2022. The therapeutic effects of DDP/CD44-shRNA nanoliposomes in AMF on ovarian cancer. Front Oncol. 12:811783. doi: 10.3389/fonc.2022.811783.
  • Guo X, Fang Z, Zhang M, Yang D, Wang S, Liu K. 2020. A co-delivery system of curcumin and p53 for enhancing the sensitivity of drug-resistant ovarian cancer cells to cisplatin. Molecules. 25(11):2621. doi: 10.3390/molecules25112621.
  • Guo X, Guo N, Zhao J, Cai Y. 2017. Active targeting co-delivery system based on hollow mesoporous silica nanoparticles for antitumor therapy in ovarian cancer stem-like cells. Oncol Rep. 38(3):1442–1450. doi: 10.3892/or.2017.5829.
  • Guo X, Mei J, Zhang C. 2020. Development of drug dual-carriers delivery system with mitochondria-targeted and pH/heat responsive capacity for synergistic photothermal-chemotherapy of ovarian cancer. Int J Nanomedicine. 15:301–313. doi: 10.2147/IJN.S226517.
  • He C, Poon C, Chan C, Yamada SD, Lin W. 2016. Nanoscale Coordination Polymers Codeliver Chemotherapeutics And siRNAs to eradicate tumors of cisplatin-resistant ovarian cancer [Research Support, N.I.H., Extramural]. J Am Chem Soc. 138(18):6010–6019. doi: 10.1021/jacs.6b02486.
  • Hu Y, Ran M, Wang B, Lin Y, Cheng Y, Zheng S. 2020. Co-delivery of docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment. Int J Nanomedicine. 15:9703–9715. doi: 10.2147/IJN.S274083.
  • Huang YH, Peng W, Furuuchi N, Gerhart J, Rhodes K, Mukherjee N, Jimbo M, Gonye GE, Brody JR, Getts RC, et al. 2016. Delivery of therapeutics targeting the mRNA-binding protein HuR using 3DNA nanocarriers suppresses ovarian tumor growth [Research Support, Non-U.S. Gov’t]. Cancer Res. 76(6):1549–1559. doi: 10.1158/0008-5472.CAN-15-2073.
  • Jang SH, Choi SJ, Oh JH, Chae SW, Nam K, Park JS, Lee HJ. 2011. Nonviral gene delivery to human ovarian cancer cells using arginine-grafted PAMAM dendrimer [Research Support, Non-U.S. Gov’t]. Drug Dev Ind Pharm. 37(1):41–46. doi: 10.3109/03639045.2010.489563.
  • Javid A, Ahmadian S, Saboury AA, Kalantar SM, Rezaei-Zarchi S, Shahzad S. 2014. Biocompatible APTES-PEG modified magnetite nanoparticles: effective carriers of antineoplastic agents to ovarian cancer [Research Support, Non-U.S. Gov’t]. Appl Biochem Biotechnol. 173(1):36–54. doi: 10.1007/s12010-014-0740-6.
  • Kala S, Mak AS, Liu X, Posocco P, Pricl S, Peng L, Wong AS. 2014. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer [Research Support, Non-U.S. Gov’t]. J Med Chem. 57(6):2634–2642. doi: 10.1021/jm401907z.
  • Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. 2018. Recent advances in “smart” delivery systems for extended drug release in cancer therapy [Review]. Int J Nanomedicine. 13:4727–4745. doi: 10.2147/IJN.S168053.
  • Kaye SB, Colombo N, Monk BJ, Tjulandin S, Kong B, Roy M, Chan S, Filipczyk-Cisarz E, Hagberg H, Vergote I, et al. 2011. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer delays third-line chemotherapy and prolongs the platinum-free interval [Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Ann Oncol. 22(1):49–58. doi: 10.1093/annonc/mdq353.
  • Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. 2019. Natamycin solid lipid nanoparticles – sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J Nanomedicine. 14:2515–2531. doi: 10.2147/IJN.S190502.
  • Kim GH, Won JE, Byeon Y, Kim MG, Wi TI, Lee JM, Park YY, Lee JW, Kang TH, Jung ID, et al. 2018. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Deliv. 25(1):1394–1402. doi: 10.1080/10717544.2018.1480672.
  • Kim Y, Pourgholami MH, Morris DL, Stenzel MH. 2011. An optimized RGD-decorated micellar drug delivery system for albendazole for the treatment of ovarian cancer: from RAFT polymer synthesis to cellular uptake [Research Support, Non-U.S. Gov’t]. Macromol Biosci. 11(2):219–233. doi: 10.1002/mabi.201000293.
  • Klajnert B, Bryszewska M. 2001. Dendrimers: properties and applications [Review]. Acta Biochim Pol. 48(1):199–208. doi: 10.18388/abp.2001_5127.
  • Kobayashi M, Sawada K, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Nakamura K, Kawano M, Kodama M, Hashimoto K, et al. 2020. Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer [Research Support, Non-U.S. Gov’t]. Biochem Biophys Res Commun. 527(1):153–161. doi: 10.1016/j.bbrc.2020.04.076.
  • Kulhari H, Pooja D, Kota R, Reddy TS, Tabor RF, Shukla R, Adams DJ, Sistla R, Bansal V. 2016. Cyclic RGDfK peptide functionalized polymeric nanocarriers for targeting gemcitabine to ovarian cancer cells [Research Support, Non-U.S. Gov’t]. Mol Pharm. 13(5):1491–1500. doi: 10.1021/acs.molpharmaceut.5b00935.
  • Kumari M, Prasad S, Fruk L, Parshad B. 2021. Polyglycerol-based hydrogels and nanogels: from synthesis to applications [Review]. Future Med Chem. 13(4):419–438. doi: 10.4155/fmc-2020-0205.
  • Lee J, Ahn HJ. 2018. PEGylated DC-Chol/DOPE cationic liposomes containing KSP siRNA as a systemic siRNA delivery carrier for ovarian cancer therapy [Research Support, Non-U.S. Gov’t]. Biochem Biophys Res Commun. 503(3):1716–1722. doi: 10.1016/j.bbrc.2018.07.104.
  • Li S, Li X, Ding J, Han L, Guo X. 2019. Anti-tumor efficacy of folate modified PLGA-based nanoparticles for the co-delivery of drugs in ovarian cancer. Drug Des Devel Ther. 13:1271–1280. doi: 10.2147/DDDT.S195493.
  • Lin CJ, Kuan CH, Wang LW, Wu HC, Chen Y, Chang CW, Huang RY, Wang TW. 2016. Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics [Research Support, Non-U.S. Gov’t]. Biomaterials. 90:12–26. doi: 10.1016/j.biomaterials.2016.03.005.
  • Liu Y, Ng Y, Toh MR, Chiu GNC. 2015. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer [Research Support, Non-U.S. Gov’t]. J Control Release. 220(Pt A):438–446. doi: 10.1016/j.jconrel.2015.11.004.
  • Lynch HT, Casey MJ, Snyder CL, Bewtra C, Lynch JF, Butts M, Godwin AK. 2009. Hereditary ovarian carcinoma: heterogeneity, molecular genetics, pathology, and management [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Mol Oncol. 3(2):97–137. doi: 10.1016/j.molonc.2009.02.004.
  • Mohseni S, Aghayan M, Ghorani-Azam A, Behdani M, Asoodeh A. 2014. Evaluation of antibacterial properties of barium zirconate titanate (BZT) nanoparticle. Braz J Microbiol. 45(4):1393–1399. doi: 10.1590/s1517-83822014000400033.
  • Monk BJ, Ghatage P, Parekh T, Henitz E, Knoblauch R, Matos-Pita AS, Nieto A, Park YC, Cheng PS, Li W, et al. 2015. Effect of BRCA1 and XPG mutations on treatment response to trabectedin and pegylated liposomal doxorubicin in patients with advanced ovarian cancer: exploratory analysis of the phase 3 OVA-301 study [Clinical Trial, Phase III Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Ann Oncol. 26(5):914–920. doi: 10.1093/annonc/mdv071.
  • Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vermorken JB, Muggia FM, Pujade-Lauraine E, Park YC, Parekh TV, Poveda AM. 2012. Trabectedin plus pegylated liposomal doxorubicin (PLD) versus PLD in recurrent ovarian cancer: overall survival analysis [Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial]. Eur J Cancer. 48(15):2361–2368. doi: 10.1016/j.ejca.2012.04.001.
  • Monk BJ, Herzog TJ, Wang G, Triantos S, Maul S, Knoblauch R, McGowan T, Shalaby WSW, Coleman RL. 2020. A phase 3 randomized, open-label, multicenter trial for safety and efficacy of combined trabectedin and pegylated liposomal doxorubicin therapy for recurrent ovarian cancer [Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Gynecol Oncol. 156(3):535–544. doi: 10.1016/j.ygyno.2019.12.043.
  • Naseri N, Valizadeh H, Zakeri-Milani P. 2015. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application [Review]. Adv Pharm Bull. 5(3):305–313. doi: 10.15171/apb.2015.043.
  • Niu X, Gao Z, Qi S, Su L, Yang N, Luan X, Li J, Zhang Q, An Y, Zhang S. 2018. Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Int J Nanomedicine. 13:4895–4911. doi: 10.2147/IJN.S171361.
  • Nukolova NV, Oberoi HS, Zhao Y, Chekhonin VP, Kabanov AV, Bronich TK. 2013. LHRH-targeted nanogels as a delivery system for cisplatin to ovarian cancer [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Pharm. 10(10):3913–3921. doi: 10.1021/mp4003688.
  • Oda K, Ikeda Y, Kashiyama T, Miyasaka A, Inaba K, Fukuda T, Asada K, Sone K, Wada-Hiraike O, Kawana K, et al. 2016. Characterization of TP53 and PI3K signaling pathways as molecular targets in gynecologic malignancies. J Obstet Gynaecol Res. 42(7):757–762. doi: 10.1111/jog.13018.
  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. BMJ. 372:n71. doi: 10.1136/bmj.n71.
  • Pan D, She W, Guo C, Luo K, Yi Q, Gu Z. 2014. PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy [Research Support, Non-U.S. Gov’t]. Biomaterials. 35(38):10080–10092. doi: 10.1016/j.biomaterials.2014.09.006.
  • Patel NR, Piroyan A, Ganta S, Morse AB, Candiloro KM, Solon AL, Nack AH, Galati CA, Bora C, Maglaty MA, et al. 2018. In vitro and in vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers [Research Support, N.I.H., Extramural]. Cancer Biol Ther. 19(7):554–564. doi: 10.1080/15384047.2017.1395118.
  • Pattni BS, Nagelli SG, Aryasomayajula B, Deshpande PP, Kulkarni A, Hartner WC, Thakur G, Degterev A, Torchilin VP. 2016. Targeting of micelles and liposomes loaded with the pro-apoptotic drug, NCL-240, into NCI/ADR-RES cells in a 3D spheroid model [Research Support, N.I.H., Extramural]. Pharm Res. 33(10):2540–2551. doi: 10.1007/s11095-016-1978-1.
  • Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, Yu L. 2020. Research and development of drug delivery systems based on drug transporter and nano-formulation [Review]. Asian J Pharm Sci. 15(2):220–236. doi: 10.1016/j.ajps.2020.02.004.
  • Pi F, Zhang H, Li H, Thiviyanathan V, Gorenstein DG, Sood AK, Guo P. 2017. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nanomedicine. 13(3):1183–1193. doi: 10.1016/j.nano.2016.11.015.
  • Pignata S, Scambia G, Villanucci A, Naglieri E, Ibarbia MA, Brusa F, Bourgeois H, Sorio R, Casado A, Reichert D, et al. 2021. A European, observational, prospective trial of trabectedin plus pegylated liposomal doxorubicin in patients with platinum-sensitive ovarian cancer [Clinical Trial, Phase IV Observational Study Research Support, Non-U.S. Gov’t]. Oncologist. 26(4):e658–e668. doi: 10.1002/onco.13630.
  • Poveda A, Vergote I, Tjulandin S, Kong B, Roy M, Chan S, Filipczyk-Cisarz E, Hagberg H, Kaye SB, Colombo N, et al. 2011. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer: outcomes in the partially platinum-sensitive (platinum-free interval 6-12 months) subpopulation of OVA-301 phase III randomized trial [Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Ann Oncol. 22(1):39–48. doi: 10.1093/annonc/mdq352.
  • Purushothaman K, Uma P, Begum KMMS. 2020. Magnetic casein-CaFe2O4 nanohybrid carrier conjugated with progesterone for enhanced cytotoxicity of citrus peel derived hesperidin drug towards breast and ovarian cancer. Int J Biol Macromol. 151:293–304. doi: 10.1016/j.ijbiomac.2020.02.172.
  • Reid BM, Permuth JB, Sellers TA. 2017. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 14(1):9–32.
  • Riahi-Zanjani B, Balali-Mood M, Asoodeh A, Es’haghi Z, Ghorani-Azam A. 2019. Potential application of amino acids in analytical toxicology. Talanta. 197:168–174. doi: 10.1016/j.talanta.2019.01.019.
  • Riahi-Zanjani B, Balali-Mood M, Es’haghi Z, Asoodeh A, Ghorani-Azam A. 2019. Molecular modeling and experimental study of a new peptide-based microextraction fiber for preconcentrating morphine in urine samples. J Mol Model. 25(3) doi: 10.1007/s00894-019-3925-7.
  • Ritskes-Hoitinga M, Leenaars M, Avey M, Rovers M, Scholten R. 2014. Systematic reviews of preclinical animal studies can make significant contributions to health care and more transparent translational medicine. Cochrane Database Syst Rev. 3:ED000078.
  • Romani C, Cocco E, Bignotti E, Moratto D, Bugatti A, Todeschini P, Bandiera E, Tassi R, Zanotti L, Pecorelli S, et al. 2015. Evaluation of a novel human IgG1 anti-claudin3 antibody that specifically recognizes its aberrantly localized antigen in ovarian cancer cells and that is suitable for selective drug delivery [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Oncotarget. 6(33):34617–34628. doi: 10.18632/oncotarget.5315.
  • Satpathy M, Wang L, Zielinski RJ, Qian W, Wang YA, Mohs AM, Kairdolf BA, Ji X, Capala J, Lipowska M, et al. 2019. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Theranostics. 9(3):778–795. doi: 10.7150/thno.29964.
  • Saxena V, Hussain MD. 2013. Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J Biomed Nanotechnol. 9(7):1146–1154. doi: 10.1166/jbn.2013.1632.
  • Schirrmacher V. 2019. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol. 54(2):407–419. doi: 10.3892/ijo.2018.4661.
  • Shen W, Chen X, Luan J, Wang D, Yu L, Ding J. 2017. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl Mater Interfaces. 9(46):40031–40046. doi: 10.1021/acsami.7b11998.
  • Sherje AP, Jadhav M, Dravyakar BR, Kadam D. 2018. Dendrimers: a versatile nanocarrier for drug delivery and targeting [Review]. Int J Pharm. 548(1):707–720. doi: 10.1016/j.ijpharm.2018.07.030.
  • Song H, Quan F, Yu Z, Zheng M, Ma Y, Xiao H, Ding F. 2019. Carboplatin prodrug conjugated Fe3O4 nanoparticles for magnetically targeted drug delivery in ovarian cancer cells [Research Support, Non-U.S. Gov’t]. J Mater Chem B. 7(3):433–442. doi: 10.1039/c8tb02574f.
  • Song KM, Lee S, Ban C. 2012. Aptamers and their biological applications [Research Support, Non-U.S. Gov’t Review]. Sensors. 12(1):612–631. doi: 10.3390/s120100612.
  • Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A, Tiourin E, Soriaga AB, Lu J, Jiang L, Faull KF, et al. 2016. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell. 29(1):90–103. doi: 10.1016/j.ccell.2015.12.002.
  • Sun B, Taha MS, Ramsey B, Torregrosa-Allen S, Elzey BD, Yeo Y. 2016. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Research Support, Non-U.S. Gov’t]. J Control Release. 235:91–98. doi: 10.1016/j.jconrel.2016.05.056.
  • Talekar M, Ganta S, Singh A, Amiji M, Kendall J, Denny WA, Garg S. 2012. Phosphatidylinositol 3-kinase inhibitor (PIK75) containing surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-apoptotic activity in ovarian cancer cells. Pharm Res. 29(10):2874–2886. doi: 10.1007/s11095-012-0793-6.
  • Teneriello MG, Tseng PC, Crozier M, Encarnacion C, Hancock K, Messing MJ, Boehm KA, Williams A, Asmar L. 2009. Phase II evaluation of nanoparticle albumin-bound paclitaxel in platinum-sensitive patients with recurrent ovarian, peritoneal, or fallopian tube cancer [Clinical Trial, Phase II Multicenter Study Research Support, Non-U.S. Gov’t]. J Clin Oncol. 27(9):1426–1431. doi: 10.1200/JCO.2008.18.9548.
  • Tiet P, Li J, Abidi W, Mooney R, Flores L, Aramburo S, Batalla-Covello J, Gonzaga J, Tsaturyan L, Kang Y, et al. 2019. Silica coated paclitaxel nanocrystals enable neural stem cell loading for treatment of ovarian cancer [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Bioconjug Chem. 30(5):1415–1424. doi: 10.1021/acs.bioconjchem.9b00160.
  • Tiwari H, Karki N, Pal M, Basak S, Verma RK, Bal R, Kandpal ND, Bisht G, Sahoo NG. 2019. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: the synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf B. 178:452–459. doi: 10.1016/j.colsurfb.2019.03.037.
  • van Luijk J, Bakker B, Rovers MM, Ritskes-Hoitinga M, de Vries RB, Leenaars M. 2014. Systematic reviews of animal studies; missing link in translational research? PLOS One. 9(3):e89981. doi: 10.1371/journal.pone.0089981.
  • Vandghanooni S, Eskandani M, Barar J, Omidi Y. 2020. Antisense LNA-loaded nanoparticles of star-shaped glucose-core PCL-PEG copolymer for enhanced inhibition of oncomiR-214 and nucleolin-mediated therapy of cisplatin-resistant ovarian cancer cells. Int J Pharm. 573:118729. doi: 10.1016/j.ijpharm.2019.118729.
  • Vergote I, Bergfeldt K, Franquet A, Lisyanskaya AS, Bjermo H, Heldring N, Buyse M, Brize A. 2020. A randomized phase III trial in patients with recurrent platinum sensitive ovarian cancer comparing efficacy and safety of paclitaxel micellar and Cremophor EL-paclitaxel [Clinical Trial, Phase III Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Gynecol Oncol. 156(2):293–300. doi: 10.1016/j.ygyno.2019.11.034.
  • Wang C, Li F, Zhang T, Yu M, Sun Y. 2022. Recent advances in anti-multidrug resistance for nano-drug delivery system. Drug Deliv. 29(1):1684–1697. doi: 10.1080/10717544.2022.2079771.
  • Wang C, Xia Y, Huo S, Shou D, Mei Q, Tang W, Li Y, Liu H, Zhou Y, Zhu B. 2020. Silencing of MEF2D by siRNA loaded selenium nanoparticles for ovarian cancer therapy. Int J Nanomedicine. 15:9759–9770. doi: 10.2147/IJN.S270441.
  • Wang J, Han S, Zhang Z, Wang J, Zhang G. 2021. Preparation and performance of chemotherapy drug-loaded graphene oxide-based nanosheets that target ovarian cancer cells via folate receptor mediation. J Biomed Nanotechnol. 17(5):960–970. doi: 10.1166/jbn.2021.3080.
  • Wang L, Jia E. 2016. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance. Drug Deliv. 23(5):1810–1817. doi: 10.3109/10717544.2015.1101792.
  • Wang Y, Zhou J, Qiu L, Wang X, Chen L, Liu T, Di W. 2014. Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells [Research Support, Non-U.S. Gov’t]. Biomaterials. 35(14):4297–4309. doi: 10.1016/j.biomaterials.2014.01.035.
  • Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, Cheng RH, Wang L, Lam KS. 2009. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Biomaterials. 30(30):6006–6016. doi: 10.1016/j.biomaterials.2009.07.015.
  • Xue J, Li R, Gao D, Chen F, Xie H. 2020. CXCL12/CXCR4 axis-targeted dual-functional nano-drug delivery system against ovarian cancer. Int J Nanomedicine. 15:5701–5718. doi: 10.2147/IJN.S257527.
  • Yaşayan G, Mega Tiber P, Orun O, Alarçin E. 2020. Doxorubicin hydrochloride loaded nanotextured films as a novel drug delivery platform for ovarian cancer treatment. Pharm Dev Technol. 25(10):1289–1301. doi: 10.1080/10837450.2020.1823992.
  • Yellepeddi VK, Kumar A, Maher DM, Chauhan SC, Vangara KK, Palakurthi S. 2011. Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT [Research Support, N.I.H., Extramural]. Anticancer Res. 31(3):897–906.
  • Yuan MQ, Zhu F, Lou JY, Yuan WM, Fu L, Liu S, Zhang ZZ, Liu CY, He Q. 2014. The anti-tumoral efficacy of a docetaxel-loaded liposomal drug delivery system modified with transferrin for ovarian cancer [Research Support, Non-U.S. Gov’t]. Drug Res. 64(4):195–202. doi: 10.1055/s-0033-1355335.
  • Zare-Zardini H, Ferdowsian F, Soltaninejad H, Ghorani Azam A, Soleymani S, Zare-Shehneh M, Mofidi M, Rafati R, Ebrahimi L. 2015. Application of nanotechnology in biomedicine: a major focus on cancer therapy. J Nano Res. 35:55–66. doi: 10.4028/www.scientific.net/JNanoR.35.55.
  • Zhai J, Luwor RB, Ahmed N, Escalona R, Tan FH, Fong C, Ratcliffe J, Scoble JA, Drummond CJ, Tran N. 2018. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl Mater Interfaces. 10(30):25174–25185. doi: 10.1021/acsami.8b08125.
  • Zhang Y, Guo J, Zhang XL, Li DP, Zhang TT, Gao FF, Liu NF, Sheng XG. 2015. Antibody fragment-armed mesoporous silica nanoparticles for the targeted delivery of bevacizumab in ovarian cancer cells [Research Support, Non-U.S. Gov’t]. Int J Pharm. 496(2):1026–1033. doi: 10.1016/j.ijpharm.2015.10.080.
  • Zhang Y, Zhang P, Zhu T. 2019. Ovarian carcinoma biological nanotherapy: comparison of the advantages and drawbacks of lipid, polymeric, and hybrid nanoparticles for cisplatin delivery [Comparative Study]. Biomed Pharmacother. 109:475–483. doi: 10.1016/j.biopha.2018.10.158.
  • Zhao H, Li Q, Hong Z. 2016. Paclitaxel-loaded mixed micelles enhance ovarian cancer therapy through extracellular pH-triggered PEG detachment and endosomal escape. Mol Pharm. 13(7):2411–2422. doi: 10.1021/acs.molpharmaceut.6b00164.
  • Zhao H, Wang JC, Sun QS, Luo CL, Zhang Q. 2009. RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer [Evaluation Study Research Support, Non-U.S. Gov’t]. J Drug Target. 17(1):10–18. doi: 10.1080/10611860802368966.
  • Zheng W, Li M, Lin Y, Zhan X. 2018. Encapsulation of verapamil and doxorubicin by MPEG-PLA to reverse drug resistance in ovarian cancer. Biomed Pharmacother. 108:565–573. doi: 10.1016/j.biopha.2018.09.039.
  • Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. 2013. Nanoparticles in the ocular drug delivery. Int J Ophthalmol. 6(3):390–396.
  • Zou S, Cao N, Cheng D, Zheng R, Wang J, Zhu K, Shuai X. 2012. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin [Research Support, Non-U.S. Gov’t]. Int J Nanomedicine. 7:3823–3835. doi: 10.2147/IJN.S29328.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.