50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation of novel shell-ionotropically crosslinked micelles based on hexadecylamine and tripolyphosphate for cancer drug delivery

, , , ORCID Icon, , & show all
Pages 322-338 | Received 20 Sep 2023, Accepted 14 Mar 2024, Published online: 25 Mar 2024

References

  • Abdel-Hafez SM, Hathout RM, Sammour OA. 2018. Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. Int J Biol Macromol. 108:753–764. doi: 10.1016/j.ijbiomac.2017.10.170.
  • Agel MR, Baghdan E, Pinnapireddy SR, Lehmann J, Schäfer J, Bakowsky U. 2019. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf B Biointerfaces. 178:460–468. doi: 10.1016/j.colsurfb.2019.03.027.
  • Arkhipov VP, Arkhipov R, Filippov A. 2020. Micelles of oxyethylated isononylphenols in aqueous solutions and hydrophilic–lipophilic balance. ACS Omega. 5(43):28224–28232. doi: 10.1021/acsomega.0c04041.
  • Arzani H, Adabi M, Mosafer J, Dorkoosh F, Khosravani M, Maleki H, Nekounam H, Kamali M. 2019. Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells. Biointerface Res Appl Chem. 9(5):4225–4231.
  • Astafieva I, Zhong XF, Eisenberg A. 1993. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules. 26(26):7339–7352. doi: 10.1021/ma00078a034.
  • Bakshi MS, Doe H. 1999. Hexadecylpyridinium chloride + trimethyltetradecyl ammonium Bromide mixed micelles in polyethylene glycol + water mixtures. Bull Chem Soc Jpn. 72(9):2041–2047. doi: 10.1246/bcsj.72.2041.
  • Bazzo GC, Pezzini BR, Stulzer HK. 2020. Eutectic mixtures as an approach to enhance solubility, dissolution rate and oral bioavailability of poorly water-soluble drugs. Int J Pharm. 588:119741. doi: 10.1016/j.ijpharm.2020.119741.
  • Belman N, Israelachvili JN, Li Y, Safinya CR, Bernstein J, Golan Y. 2009. Reaction of alkylamine surfactants with carbon dioxide: relevance to nanocrystal synthesis. Nano Lett. 9(5):2088–2093. doi: 10.1021/nl900534m.
  • Bergonzi MC, Hamdouch R, Mazzacuva F, Isacchi B, Bilia AR. 2014. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT. 59(1):148–155. doi: 10.1016/j.lwt.2014.06.009.
  • Blanco E, Shen H, Ferrari M. 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 33(9):941–951. doi: 10.1038/nbt.3330.
  • Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, et al. 2011. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 6(12):815–823. doi: 10.1038/nnano.2011.166.
  • Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. 1997. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 14(10):1431–1436. doi: 10.1023/a:1012128907225.
  • Cook D. 1961. Vibrational spectra of pyridinium salts. Can J Chem. 39(10):2009–2024. doi: 10.1139/v61-271.
  • Das P, Mandal P, Shit D, Pramanik S. 2022. Unraveling the effect of surfactant chain length on the binding interaction of curcumin with cationic and non-ionic micelles. J Surfact Detergents. 25(5):655–664. doi: 10.1002/jsde.12592.
  • Dmour I, Taha, MO. 2017. Novel nanoparticles based on chitosan-dicarboxylate conjugates via tandem ionotropic/covalent crosslinking with tripolyphosphate and subsequent evaluation as drug delivery vehicles. Int J Pharm. 529(1–2):15–31. doi: 10.1016/j.ijpharm.2017.06.061.
  • England CG. 2014. Study of novel nanoparticle transport and drug release for cancer treatment Electronic Theses and Dissertations.
  • Fan W, Zhang L, Li Y, Wu H. 2019. Recent progress of crosslinking strategies for polymeric micelles with enhanced drug delivery in cancer therapy. Curr Med Chem. 26(13):2356–2376. doi: 10.2174/0929867324666171121102255.
  • Fan Y-N, Li M, Luo Y-L, Chen Q, Wang L, Zhang H-B, Shen S, Gu Z, Wang J. 2018. Cationic lipid-assisted nanoparticles for delivery of mRNA cancer vaccine. Biomater Sci. 6(11):3009–3018. doi: 10.1039/c8bm00908b.
  • Fang XB, Zhang JM, Xie X, Liu D, He CW, Wan JB, Chen MW. 2016. pH-sensitive micelles based on acid-labile pluronic F68-curcumin conjugates for improved tumor intracellular drug delivery. Int J Pharm. 502(1-2):28–37. doi: 10.1016/j.ijpharm.2016.01.029.
  • Feng X, Wang C, Lin B, Xu F. 2006. Methoxy poly(ethylene glycol)-conjugated linoleic acid polymeric micelles for paclitaxel delivery. Colloid J. 68(6):779–783. doi: 10.1134/S1061933X06060160.
  • Hema S, Thambiraj S, Shankaran DR. 2018. Nanoformulations for targeted drug delivery to prostate cancer: an overview. J Nanosci Nanotechnol. 18(8):5171–5191. doi: 10.1166/jnn.2018.15420.
  • Holas T, Zbytovská J, Vávrová K, Berka P, Mádlová M, Klimentová J, Hrabálek A. 2006. Thermotropic phase behavior of long-chain alkylammonium-alkylcarbamates. Thermochim Acta. 441(2):116–123. doi: 10.1016/j.tca.2005.12.012.
  • Huang S, Yu X, Yang L, Song F, Chen G, Lv Z, Li T, Chen D, Zhu W, Yu A, et al. 2014. The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles. Eur J Pharm Sci. 63:187–198., doi: 10.1016/j.ejps.2014.07.007.
  • Ibuki Y, Toyooka T. 2012. Nanoparticle uptake measured by flow cytometry. Nanotoxicity: methods and Protocols. 926:157–166.
  • Jalali F, Shaeghi Rad A. 2008. Conductance study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in mixed solvents containing dilute electrolyte solutions. JICS. 5(2):309–315. doi: 10.1007/BF03246123.
  • Jastrzębski W, Sitarz M, Rokita M, Bułat K. 2011. Infrared spectroscopy of different phosphates structures. Spectrochim Acta A Mol Biomol Spectrosc. 79(4):722–727. doi: 10.1016/j.saa.2010.08.044.
  • Khan N, Brettmann B. 2018. Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers. 11(1):51–79. doi: 10.3390/polym11010051.
  • Kim S, Shi Y, Kim JY, Park K, Cheng JX. 2010a. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv. 7(1):49–62. doi: 10.1517/17425240903380446.
  • Kim SH, Tan JPK, Nederberg F, Fukushima K, Colson J, Yang C, Nelson A, Yang Y-Y, Hedrick JL. 2010b. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials. 31(31):8063–8071. doi: 10.1016/j.biomaterials.2010.07.018.
  • Kozlov MY, Melik-Nubarov NS, Batrakova EV, Kabanov AV. 2000. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules. 33(9):3305–3313. doi: 10.1021/ma991634x.
  • Krueger P, Smith D. 1967. Amino group stretching vibrations in primary aliphatic amines. Can J Chem. 45(14):1605–1610. doi: 10.1139/v67-262.
  • Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. 2012. Polymeric micelles: authoritative aspects for drug delivery. Des Monomers Polym. 15(5):465–521. doi: 10.1080/1385772X.2012.688328.
  • Kurien BT, Singh A, Matsumoto H, Scofield RH. 2007. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol. 5(4):567–576. doi: 10.1089/adt.2007.064.
  • Lam VD, Walker LM. 2010. A pH-induced transition of surfactant-polyelectrolyte aggregates from cylindrical to string-of-pearls structure. Langmuir. 26(13):10489–10496. doi: 10.1021/la100130v.
  • Lamb M, Laugenour K, Liang O, Alexander M, Foster CE, Lakey JR. 2014. In vitro maturation of viable islets from partially digested young pig pancreas. Cell Transplant. 23(3):263–272. doi: 10.3727/096368912X662372.
  • Le TT, Kim D. 2019. Folate-PEG/Hyd-curcumin/C18-g-PSI micelles for site specific delivery of curcumin to colon cancer cells via Wnt/β-catenin signaling pathway. Mater Sci Eng C Mater Biol Appl. 101:464–471. doi: 10.1016/j.msec.2019.03.100.
  • Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. 2020. Recent advances in development of dendritic polymer‐based nanomedicines for cancer diagnosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 13(2):e1670.
  • Li M, Gao M, Fu Y, Chen C, Meng X, Fan A, Kong D, Wang Z, Zhao Y. 2016. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery. Colloids Surf B Biointerfaces. 140:11–18. doi: 10.1016/j.colsurfb.2015.12.025.
  • Liu HH, Lanphere J, Walker S, Cohen Y. 2015. Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation. Nanotechnology. 26(4):045708. doi: 10.1088/0957-4484/26/4/045708.
  • Lou G, Anderluzzi G, Schmidt ST, Woods S, Gallorini S, Brazzoli M, Giusti F, Ferlenghi I, Johnson RN, Roberts CW, et al. 2020. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: the impact of cationic lipid selection. J Control Release. 325:370–379. doi: 10.1016/j.jconrel.2020.06.027.
  • Lu Y, Yue Z, Xie J, Wang W, Zhu H, Zhang E, Cao Z. 2018a. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng. 2(5):318–325. doi: 10.1038/s41551-018-0234-x.
  • Lu Y, Zhang E, Yang J, Cao Z. 2018b. Strategies to improve micelle stability for drug delivery. Nano Res. 11(10):4985–4998. doi: 10.1007/s12274-018-2152-3.
  • Luo YL, Xu CF, Li HJ, Cao ZT, Liu J, Wang JL, Du XJ, Yang XZ, Gu Z, Wang J. 2018. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano. 12(2):994–1005. doi: 10.1021/acsnano.7b07874.
  • Mahmud A, Xiong XB, Aliabadi HM, Lavasanifar A. 2007. Polymeric micelles for drug targeting. J Drug Target. 15(9):553–584. doi: 10.1080/10611860701538586.
  • Megwa SA, Cross SE, Whitehouse MW, Benson HA, Roberts MS. 2000. Effect of ion pairing with alkylamines on the in-vitro dermal penetration and local tissue disposition of salicylates. J Pharm Pharmacol. 52(8):929–940. doi: 10.1211/0022357001774813.
  • Mitsionis AI, Vaimakis TC. 2012. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chem Phys Lett. 547:110–113. doi: 10.1016/j.cplett.2012.07.059.
  • Mogharbel BF, Francisco JC, Irioda AC, Dziedzic DSM, Ferreira PE, De Souza D, De Souza C, Neto NB, Guarita-Souza LC, Franco CRC, et al. 2018. Fluorescence properties of curcumin-loaded nanoparticles for cell tracking. Int J Nanomed. 13:5823–5836. doi: 10.2147/IJN.S171099.
  • Mohanty S, Tirkey B, Jena SR, Samanta L, Subuddhi U. 2023. Exploring steroidal surfactants as potential drug carriers for an anticancer drug curcumin: an insight into the effect of surfactants’ structure on the photophysical properties, stability, and activity of curcumin. Langmuir. 39(5):1852–1869. doi: 10.1021/acs.langmuir.2c02797.
  • Mohr A, Talbiersky P, Korth H-G, Sustmann R, Boese R, Bläser D, Rehage H. 2007. A new pyrene-based fluorescent probe for the determination of critical micelle concentrations. J Phys Chem B. 111(45):12985–12992. doi: 10.1021/jp0731497.
  • Mondal S, Ghosh S, Moulik SP. 2015. Colloidal dispersions of lipids and curcumin, and the solubility and degradation kinetics of the latter in micellar solution. Soft Mater. 134(2):118–125.
  • National Center for Biotechnology Information. 2022. PubChem Compound Summary for CID 8926, Hexadecylamine. Retrieved January 30, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Hexadecylamine.
  • Neve F, Francescangeli O, Crispini A. 2002. Crystal architecture and mesophase structure of long-chain N-alkylpyridinium tetrachlorometallates. Inorganica Chim Acta. 338:51–58.
  • Nunn NS. 1993. FTIR and Rheological studies of surfactant adsorption onto silica. The United Kingdom: Durham University.
  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. 2010. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 27(12):2569–2589. doi: 10.1007/s11095-010-0233-4.
  • O'reilly RK, Hawker CJ, Wooley KL. 2006. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 35(11):1068–1083. doi: 10.1039/b514858h.
  • Pan Q, Xie L, Liu R, Pu Y, Wu D, Gao W, Luo K, He B. 2022. Two birds with one stone: copper metal-organic framework as a carrier of disulfiram prodrug for cancer therapy. Int J Pharm. 612:121351. doi: 10.1016/j.ijpharm.2021.121351.
  • Panchagnula R. 1998. Pharmaceutical aspects of paclitaxel. Int J Pharm. 172(1–2):1–15. doi: 10.1016/S0378-5173(98)00188-4.
  • Piñeiro L, Novo M, Al-Soufi W. 2015. Fluorescence emission of pyrene in surfactant solutions. Adv Colloid Interface Sci. 215:1–12. doi: 10.1016/j.cis.2014.10.010.
  • Rahman SM, Telny TC, Ravi TK, Kuppusamy S. 2009. Role of surfactant and pH in dissolution of curcumin. Indian J Pharm Sci. 71(2):139–142. doi: 10.4103/0250-474X.54280.
  • Raju YP, Hyndavi N, Chowdary VH, Nair RS, Basha DJ, Tejeswari N. 2017. In vitro assessment of non-irritant microemulsified voriconazole hydrogel system. Artif Cells Nanomed Biotechnol. 45(8):1539–1547. doi: 10.1080/21691401.2016.1260579.
  • Reddy B, Yadav HK, Nagesha DK, Raizaday A, Karim A. 2015. Polymeric micelles as novel carriers for poorly soluble drugs. J Nanosci Nanotechnol. 15(6):4009–4018. doi: 10.1166/jnn.2015.9713.
  • Sacco P, Paoletti S, Cok M, Asaro F, Abrami M, Grassi M, Donati I. 2016. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int J Biol Macromol. 92:476–483. doi: 10.1016/j.ijbiomac.2016.07.056.
  • Saeed RM, Dmour I, Taha MO. 2020. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front Bioeng Biotechnol. 8:4. doi: 10.3389/fbioe.2020.00004.
  • Salvati A, Nelissen I, Haase A, Åberg C, Moya S, Jacobs A, Alnasser F, Bewersdorff T, Deville S, Luch A, et al. 2018. Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact. 9:42–50. doi: 10.1016/j.impact.2017.10.004.
  • Seo SW, Han HK, Chun MK, Choi HK. 2012. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int J Pharm. 424(1-2):18–25. doi: 10.1016/j.ijpharm.2011.12.051.
  • Shen S, Zhang Y, Chen K-G, Luo Y-L, Wang J. 2018. Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and cancer therapy. Mol Pharm. 15(9):3642–3653. doi: 10.1021/acs.molpharmaceut.7b00997.
  • Silvestro I, Francolini I, Di Lisio V, Martinelli A, Pietrelli L, Scotto d’Abusco A, Scoppio A, Piozzi A. 2020. Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials. 13(16):3577. doi: 10.3390/ma13163577.
  • Sinjari B, Pizzicannella J, D'Aurora M, Zappacosta R, Gatta V, Fontana A, Trubiani O, Diomede F. 2019. Curcumin/liposome nanotechnology as delivery platform for anti-inflammatory activities via NFkB/ERK/pERK pathway in human dental pulp treated with 2-hydroxyEthyl methacrylate (HEMA). Front Physiol. 10:633. doi: 10.3389/fphys.2019.00633.
  • Sintov AC. 2015. Transdermal delivery of curcumin via microemulsion. Int J Pharm. 481(1–2):97–103. doi: 10.1016/j.ijpharm.2015.02.005.
  • Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. 2020. Recent advances in nanomicelles delivery systems. Nanomaterials. 11(1):70. doi: 10.3390/nano11010070.
  • Verma G, Hassan PA. 2013. Self-assembled materials: design strategies and drug delivery perspectives. Phys Chem Chem Phys. 15(40):17016–17028. doi: 10.1039/c3cp51207j.
  • Wang B, Ding Y, Lu K, Guan Y, Li X, Xu H, Wu P. 2020. Host-guest chemistry immobilized nickel nanoparticles on zeolites as efficient catalysts for amination of 1-octanol. J Catal. 381:443–453. doi: 10.1016/j.jcat.2019.11.021.
  • Wu X, Zhang Y, Li Y, Schmidt-Wolf IGH. 2021. Improvements in flow cytometry-based cytotoxicity assay. Cytometry A. 99(7):680–688. doi: 10.1002/cyto.a.24242.
  • Xu B, Ding Z, Hu Y, Zhang T, Shi S, Yu G, Qi X. 2022. Preparation and evaluation of the cytoprotective activity of micelles with DSPE-PEG-C60 as a carrier against doxorubicin-induced cytotoxicity. Front Pharmacol. 13:952800. doi: 10.3389/fphar.2022.952800.
  • Zhan X, Wu Z, Chen Z, Cui X. 2022. Mechanism of the micellar solubilization of curcumin by mixed surfactants of SDS and Brij35 via NMR spectroscopy. Molecules. 27(15):5032. doi: 10.3390/molecules27155032.
  • Zhou H, S, Beevers C, Huang S. 2011. The targets of curcumin. Curr Drug Targets. 12(3):332–347. doi: 10.2174/138945011794815356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.