61
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of 3D-printed scaffolds loaded with gallium acetylacetonate for potential application in osteoclastic bone resorption

, , , &
Pages 339-352 | Received 09 Nov 2023, Accepted 15 Mar 2024, Published online: 22 Mar 2024

References

  • Arnett T, Spowage M. 1996. Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone. 18(3):277–279. doi: 10.1016/8756-3282(95)00486-6.
  • Batul R, Tamanna T, Khaliq A, Yu A. 2017. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci. 5(7):1204–1229. doi: 10.1039/c7bm00187h.
  • Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z, Alruwaili NK, Alrobaian M, Tarique M, Rahman M, et al. 2020. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 25(9):1668–1681. doi: 10.1016/j.drudis.2020.07.007.
  • Bosworth LA, Hu W, Shi Y, Cartmell SH. 2019. Enhancing biocompatibility without compromising material properties: an optimised naoh treatment for electrospun polycaprolactone fibres. J Nanomater. 2019:1–11. doi: 10.1155/2019/4605092.
  • Calori IR, Braga G, da Costa Carvalho de Jesus P, Bi H, Tedesco AC. 2020. Polymer scaffolds as drug delivery systems. Eur Polym J. 129:109621. doi: 10.1016/j.eurpolymj.2020.109621.
  • Chakka JL, Acri T, Laird NZ, Zhong L, Shin K, Elangovan S, Salem AK. 2021. Polydopamine functionalized VEGF gene-activated 3D printed scaffolds for bone regeneration. RSC Adv. 11(22):13282–13291. doi: 10.1039/d1ra01193f.
  • Chakka LRJ, Laird NZ, Acri T, Elangovan S, Salem AK. 2020. Polydopamine functionalized 3D printed scaffolds for bone tissue engineering. Trans AMMM. 2(1). doi: 10.18416/AMMM.2020.2009020.
  • Chen S, Shi Y, Luo Y, Ma J. 2019. Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery. Colloids Surf B Biointerf. 179:121–127. doi: 10.1016/j.colsurfb.2019.03.063.
  • Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW. 2011. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem. 21(26):9419. doi: 10.1039/c0jm04502k.
  • Costa PF, Puga AM, Díaz-Gomez L, Concheiro A, Busch DH, Alvarez-Lorenzo C. 2015. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int J Pharm. 496(2):541–550. doi: 10.1016/j.ijpharm.2015.10.055.
  • Czech T, Oyewumi MO. 2021. Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res. 11(3):842–865. doi: 10.1007/s13346-020-00829-x.
  • Donate R, Alemán-Domínguez ME, Monzón M. 2021. On the effectiveness of oxygen plasma and alkali surface treatments to modify the properties of polylactic acid scaffolds. Polymers. 13(10):1643. doi: 10.3390/polym13101643.
  • Ghanta P, Winschel T, Hessel E, Oyewumi O, Czech T, Oyewumi MO. 2023. Efficacy assessment of methylcellulose-based thermoresponsive hydrogels loaded with gallium acetylacetonate in osteoclastic bone resorption. Drug Deliv Transl Res. 13(10):2533–2549. doi: 10.1007/s13346-023-01336-5.
  • Gómez-Cerezo N, Verron E, Montouillout V, Fayon F, Lagadec P, Bouler JM, Bujoli B, Arcos D, Vallet-Regí M. 2018. The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses. Acta Biomater. 76:333–343. doi: 10.1016/j.actbio.2018.06.036.
  • Goole J, Amighi K. 2016. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 499(1–2):376–394. doi: 10.1016/j.ijpharm.2015.12.071.
  • He F, Lu T, Feng S, Wang Y, Huang C, Zhang Y, Deng X, Ye J. 2021. Alliance of gallium and strontium potently mediates the osteoclastic and osteogenic activities of β-tricalcium phosphate bioceramic scaffolds. Chem Eng J. 412:128709. doi: 10.1016/j.cej.2021.128709.
  • Jaidev LR, Chatterjee K. 2019. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Des. 161(5):44–54. doi: 10.1016/j.matdes.2018.11.018.
  • Jain AK, Goyal AK, Gupta PN, Khatri K, Mishra N, Mehta A, Mangal S, Vyas SP. 2009. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release. 136(2):161–169. doi: 10.1016/j.jconrel.2009.02.010.
  • Jassal M, Sengupta S, Bhowmick S. 2015. Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of docorubicin hydrochloride. J Biomater Sci Polym Ed. 26(18):1425–1438. doi: 10.1080/09205063.2015.1100495.
  • Jose J, Sultan S, Kalarikkal N, Thomas S, Mathew AP. 2020. Fabrication and functionalization of 3D-printed soft and hard scaffolds with growth factors for enhanced bioactivity. RSC Adv. 10(62):37928–37937. doi: 10.1039/d0ra08295c.
  • Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA. 2020. Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. Int J Biol Macromol. 156:704–716. doi: 10.1016/j.ijbiomac.2020.04.019.
  • Kao C-T, Lin C-C, Chen Y-W, Yeh C-H, Fang H-Y, Shie M-Y. 2015. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C. 56:165–173. doi: 10.1016/j.msec.2015.06.028.
  • Karanth D, Puleo D, Dawson D, Holliday LS, Sharab L. 2023. Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration. Clin Exp Dent Res. 9(2):398–408. doi: 10.1002/cre2.712.
  • Khosla S, Hofbauer LC. 2017. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 5(11):898–907. doi: 10.1016/S2213-8587(17)30188-2.
  • Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H. 2020. Osteoblast-osteoclast communication and bone homeostasis. Cells. 9(9):2073. doi: 10.3390/cells9092073.
  • Lees R, Sabharwal V, Heersche J. 2001. Resorptive state and cell size influence intracellular pH regulation in rabbit osteoclasts cultured on collagen-hydroxyapatite films. Bone. 28(2):187–194. doi: 10.1016/s8756-3282(00)00433-6.
  • Lei B, Guo B, Rambhia KJ, Ma PX. 2019. Hybrid polymer biomaterials for bone tissue regeneration. Front Med. 13(2):189–201. doi: 10.1007/s11684-018-0664-6.
  • Li C, Jiang Z, Liu X. 2010. Biochemical mechanism of gallium on prevention of fatal cage-layer osteoporosis. Biol Trace Elem Res. 134(2):195–202. doi: 10.1007/s12011-009-8467-x.
  • Liu X, Chen M, Luo J, Zhao H, Zhou X, Gu Q, Yang H, Zhu X, Cui W, Shi Q. 2021. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials. 276:121037. doi: 10.1016/j.biomaterials.2021.121037.
  • Liu S, Qin S, He M, Zhou D, Qin Q, Wang H. 2020. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Comp B Eng. 199:108238. doi: 10.1016/j.compositesb.2020.108238.
  • Li X, Wang Y, Wang Z, Qi Y, Li L, Zhang P, Chen X, Huang Y. 2018. Composite PLA/PEG/nHA/dexamethasone scaffold prepared by 3D printing for bone regeneration. Macromol Biosci. 18(6):e1800068. doi: 10.1002/mabi.201800068.
  • Maia-Pinto MOC, Brochado ACB, Teixeira BN, Sartoretto SC, Uzeda MJ, Alves ATNN, Alves GG, Calasans-Maia MD, Thiré RMSM. 2020. Biomimetic mineralization on 3D printed PLA scaffolds: on the response of human primary osteoblasts spheroids and in vivo implantation. Polymers (Basel). 13(1):74. doi: 10.3390/polym13010074.
  • Maurizi A, Rucci N. 2018. The osteoclast in bone metastasis: player and target. Cancers (Basel). 10(7):218. doi: 10.3390/cancers10070218.
  • Mellier C, Fayon F, Boukhechba F, Verron E, LeFerrec M, Montavon G, Lesoeur J, Schnitzler V, Massiot D, Janvier P, et al. 2015. Design and properties of novel gallium-doped injectable apatitic cements. Acta Biomater. 24:322–332. doi: 10.1016/j.actbio.2015.05.027.
  • Melnyk LA, Oyewumi MO. 2021. Integration of 3D printing technology in pharmaceutical compounds: progress, prospects, and challenges. Annals of 3D Printed Med. 4:100035. doi: 10.1016/j.stlm.2021.100035.
  • Menzies KL, Jones L. 2010. The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci. 87(6):387–399. doi: 10.1097/OPX.0b013e3181da863e.
  • Mohapatra S, Kar RK, Biswal PK, Bindhani S. 2022. Approaches of 3D printing in current drug delivery. Sensors Int. 3:100146. doi: 10.1016/j.sintl.2021.100146.
  • Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ. 2004. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release. 95(3):613–626. doi: 10.1016/j.jconrel.2004.01.002.
  • Park S, Kim JE, Han J, Jeong S, Lim JW, Lee MC, Son H, Kim HB, Choung Y-H, Seonwoo H, et al. 2021. 3D-printed poly(ε-caprolactone)/hydroxyapatite scaffolds modified with alkaline hydrolysis enhance osteogenesis in vitro. Polymers (Basel). 13(2):257. doi: 10.3390/polym13020257.
  • Qiu C, Lu T, He F, Feng S, Fang X, Zuo F, Jiang Q, Deng X, Ye J. 2020. Influences of gallium substitution on the phase stability, mechanical strength and cellular response of β-tricalcium phosphate bioceramics. Ceram Int. 46(10):16364–16371. doi: 10.1016/j.ceramint.2020.03.195.
  • Shibutani T, Dr., Heersche JN. 2020. Effect of medium pH on osteoclast activity and osteoclast formation in cultures of dispersed rabbit osteoclasts. J Bone Miner Res. 8(3):331–336. doi: 10.1002/jbmr.5650080310.
  • Strazic-Geljic I, Guberovic I, Didak B, Schmid-Antomarchi H, Schmid-Alliana A, Boukhechba F, Bouler J-M, Scimeca J-C, Verron E. 2016. Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastaseS. Biochem Pharmacol. 116:11–21. doi: 10.1016/j.bcp.2016.06.020.
  • Sun W, Qi M, Cheng S, Li C, Dong B, Wang L. 2023. Gallium and gallium compounds: new insights into the “Trojan horse” strategy in medical applications. Mater Design. 227:111704. doi: 10.1016/j.matdes.2023.111704.
  • Tanaka Y, Yamaoka H, Nishizawa S, Nagata S, Ogasawara T, Asawa Y, Fujihara Y, Takato T, Hoshi K. 2010. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials. 31(16):4506–4516. doi: 10.1016/j.biomaterials.2010.02.028.
  • Trebec DP, Chandra D, Gramoun A, Li K, Heersche JNM, Manolson MF. 2007. Increased expression of activating factors in large osteoclasts could explain their excessive activity in osteolytic diseases. J Cell Biochem. 101(1):205–220. doi: 10.1002/jcb.21171.
  • Tsai WB, Chen WT, Chien HW, Kuo WH, Wang MJ. 2014. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering. J Biomater Appl. 28(6):837–848. doi: 10.1177/0885328213483842.
  • Verron E, Bouler JM, Scimeca JC. 2012. Gallium as a potential candidate for treatment of osteoporosis. Drug Discov Today. 17(19–20):1127–1132. doi: 10.1016/j.drudis.2012.06.007.
  • Verron E, Loubat A, Carle GF, Vignes-Colombeix C, Strazic I, Guicheux J, Rochet N, Bouler JM, Scimeca JC. 2012. Molecular effects of gallium on osteoclastic differentiation of mouse nad human monocytes. Biochem Pharmacol. 83(5):671–679. doi: 10.1016/j.bcp.2011.12.015.
  • Wang Z, Duan Y, Duan Y. 2018. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release. 290:56–74. doi: 10.1016/j.jconrel.2018.10.009.
  • Wang Y, Mei Y, Song Y, Bachus C, Sun C, Sheshbaradaran H, Glogauer M. 2020. AP-002: a novel inhibitor of osteoclast differentiation and function without disruption of osteogenesis. Eur J Pharmacol. 889:173613. doi: 10.1016/j.ejphar.2020.173613.
  • Warrell RP, Alcock NW, Bockman RS. 1987. Gallium nitrate inhibits accelerated bone turnover in patients with bone metastases. J Clin Oncol. 5(2):292–298. doi: 10.1200/JCO.1987.5.2.292.
  • Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM. 2010. Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomed. 5:1057–1065. doi: 10.2147/IJN.S14912.
  • Xu T, Yao Q, Miszuk JM, Sanyour HJ, Hong Z, Sun H, Fong H. 2018. Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloid Surf B Biointerf. 171:31–39. doi: 10.1016/j.colsurfb.2018.07.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.