80
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The synthesis of broccoli sprout extract-loaded silk fibroin nanoparticles as efficient drug delivery vehicles: development and characterization

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 359-370 | Received 19 Feb 2024, Accepted 25 Mar 2024, Published online: 08 Apr 2024

References

  • Alipour Kakroudi A, Rahaiee S, Rajaei Litkohi H, Ghanbari Hassan Kiadeh S. 2021. Comparison of antioxidant and antibacterial activities of various herbal essential oils: an In vitro study. J Birjand Univ Med Sci. 28(4):322–334.
  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. 2003. Silk-based biomaterials. Biomaterials. 24(3):401–416. doi: 10.1016/s0142-9612(02)00353-8.
  • Askarizadeh A, Badiee A, Khamesipour A. 2020. Development of nano-carriers for Leishmania vaccine delivery. Expert Opin Drug Deliv. 17(2):167–187. doi: 10.1080/17425247.2020.1713746.
  • Azarashkan Z, Motamedzadegan A, Ghorbani-HasanSaraei A, Rahaiee S, Biparva P. 2022. Improvement of the stability and release of sulforaphane-enriched broccoli sprout extract nanoliposomes by co-encapsulation into basil seed gum. Food Bioprocess Technol. 15(7):1573–1587. doi: 10.1007/s11947-022-02826-z.
  • Baruah RR, Kalita MC, Devi D. 2020. Novel non-mulberry silk fibroin nanoparticles with enhanced activity as potential candidate in nanocarrier mediated delivery system. RSC Adv. 10(15):9070–9078. doi: 10.1039/c9ra08901b.
  • Beagan AM, Aouak T, AlJuhaiman LA, Alodainy AM, Saeed WS, Oulad Smane M. 2017. 2-hydroxyethylmethacrylate-co-2-folate ethylmethacrylate) and folic acid/Poly (2-hydroxyethylmethacrylate) solid solution: preparation and drug release investigation. Polym Plast Technol Eng. 56(18):1997–2018. doi: 10.1080/03602559.2017.1298799.
  • Danafar H, Sharafi A, Kheiri Manjili H, Andalib S. 2017. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol. 22(5):642–651. doi: 10.3109/10837450.2016.1146296.
  • Deb A, Vimala R. 2018. Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. J Drug Delivery Sci Technol. 43:333–342. doi: 10.1016/j.jddst.2017.10.025.
  • Do DP, Pai SB, Rizvi SA, D'Souza MJ. 2010. Development of sulforaphane-encapsulated microspheres for cancer epigenetic therapy. Int J Pharm. 386(1-2):114–121. doi: 10.1016/j.ijpharm.2009.11.009.
  • Doagooyan M, Kiadeh SGH, Boustan A. 2022. Breast cancer; overview and presented silymarin as well-potential as a treatment.
  • Eivazzadeh-Keihan R, Radinekiyan F, Madanchi H, Aliabadi HAM, Maleki A. 2020. Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr Polym. 248:116802. doi: 10.1016/j.carbpol.2020.116802.
  • Esfandyari-Manesh M, Darvishi B, Ishkuh FA, Shahmoradi E, Mohammadi A, Javanbakht M, Dinarvand R, Atyabi F. 2016. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: characterization and cellular cytotoxicity. Mater Sci Eng C Mater Biol Appl. 62:626–633. doi: 10.1016/j.msec.2016.01.059.
  • Ghanbari Hassan Kiadeh S, Rahaiee S, Azizi H, Govahi M. 2021. Evaluation of biological activities of raw and cooked Brassica oleracea sprout extracts rich in bioactive compound Sulforaphane. J Birjand Univ Med Sci. 28(3):236–247.
  • Gianak O, Kyzas GZ, Samanidou VF, Deliyanni EA. 2019. A review for the synthesis of silk fibroin nanoparticles with different techniques and their ability to be used for drug delivery. Curr Anal Chem. 15(4):339–348. doi: 10.2174/1573411014666180917110650.
  • González F, Quintero J, Del Río R, Mahn A. 2021. Optimization of an extraction process to obtain a food-grade sulforaphane-rich extract from broccoli (Brassica oleracea var. italica). Molecules. 26(13):4042. doi: 10.3390/molecules26134042.
  • Gu Z-X, Guo Q-H, Gu Y-J. 2012. Factors influencing glucoraphanin and sulforaphane formation in Brassica plants: a review. J Integr Agric. 11(11):1804–1816. doi: 10.1016/S2095-3119(12)60185-3.
  • Gunduz U, Keskin T, Tansık G, Mutlu P, Yalcin S, Unsoy G, Yakar A, Khodadust R, Gunduz G. 2014. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed Pharmacother. 68(6):729–736. doi: 10.1016/j.biopha.2014.08.013.
  • Gungunes C, Alpsoy L, Baykal A, Nawaz M, Akal Z. 2018. The effect of folic acid-and caffeic acid-functionalized SPION on different cancer cell lines. J Supercond Nov Magn. 31(11):3579–3588. doi: 10.1007/s10948-018-4618-7.
  • Hwang ES. 2019. Effect of cooking method on antioxidant compound contents in cauliflower. Prev Nutr Food Sci. 24(2):210–216. doi: 10.3746/pnf.2019.24.2.210.
  • Juge N, Mithen RF, Traka M. 2007. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 64(9):1105–1127. doi: 10.1007/s00018-007-6484-5.
  • Ke Y-Y, Shyu Y-T, Wu S-J. 2021. Evaluating the anti-inflammatory and antioxidant effects of broccoli treated with high hydrostatic pressure in cell models. Foods. 10(1):167. doi: 10.3390/foods10010167.
  • Kiadeh SGH, Rahaiee S. 2023. Extraction of silk fibroin protein from Bombyx Mori cocoon by an optimized solvent system.
  • Kumar S, Singh SK. 2017. Fabrication and characterization of fibroin solution and nanoparticle from silk fibers of Bombyx mori. Part Sci Technol. 35(3):304–313. doi: 10.1080/02726351.2016.1154908.
  • Laksee S, Sansanaphongpricha K, Puthong S, Sangphech N, Palaga T, Muangsin N. 2020. New organic/inorganic nanohybrids of targeted pullulan derivative/gold nanoparticles for effective drug delivery systems. Int J Biol Macromol. 162:561–577. doi: 10.1016/j.ijbiomac.2020.06.089.
  • Le TN, Luong HQ, Li H-P, Chiu C-H, Hsieh P-C. 2019. Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: a comprehensive study on in vitro disease models. Foods. 8(11):532. doi: 10.3390/foods8110532.
  • Lu W, Du F, Zhao X, Shi L, Shuang S, Cui XT, Dong C. 2019. Sulforaphane-conjugated carbon dots: a versatile nanosystem for targeted imaging and inhibition of EGFR-overexpressing cancer cells. ACS Biomater Sci Eng. 5(9):4692–4699. doi: 10.1021/acsbiomaterials.9b00690.
  • Mielczarek L, Krug P, Mazur M, Milczarek M, Chilmonczyk Z, Wiktorska K. 2019. In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int J Pharm. 558:311–318. doi: 10.1016/j.ijpharm.2019.01.008.
  • Mohapatra A, Uthaman S, Park I-K. 2019. Polyethylene glycol nanoparticles as promising tools for anticancer therapeutics. Polymeric nanoparticles as a promising tool for anti-cancer therapeutics; p. 205–231.
  • Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H. 2015. Silk fibroin nanoparticle as a novel drug delivery system. J Control Release. 206:161–176. doi: 10.1016/j.jconrel.2015.03.020.
  • Narmani A, Mohammadnejad J, Yavari K. 2019. Synthesis and evaluation of polyethylene glycol-and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. J Drug Delivery Sci Technol. 50:278–286. doi: 10.1016/j.jddst.2019.01.037.
  • Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DN, Trinh QT, Kim SY, Le QV. 2019. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel). 11(12):1933. doi: 10.3390/polym11121933.
  • Niu L, Meng L, Lu Q. 2013. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol Biosci. 13(6):735–744. doi: 10.1002/mabi.201200475.
  • Oswell NJ, Thippareddi H, Pegg RB. 2018. Practical use of natural antioxidants in meat products in the US: a review. Meat Sci. 145:469–479. doi: 10.1016/j.meatsci.2018.07.020.
  • Palliyaguru DL, Yuan JM, Kensler TW, Fahey JW. 2018. Isothiocyanates: translating the power of plants to people. Mol Nutr Food Res. 62(18):e1700965.
  • Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V. 2020. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: development, characterization, in-vitro studies. Int J Biol Macromol. 164:2018–2027. doi: 10.1016/j.ijbiomac.2020.07.326.
  • Passi M, Kumar V, Packirisamy G. 2020. Theranostic nanozyme: silk fibroin based multifunctional nanocomposites to combat oxidative stress. Mater Sci Eng C Mater Biol Appl. 107:110255. doi: 10.1016/j.msec.2019.110255.
  • Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ. 2017. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci. 18(3):237. doi: 10.3390/ijms18030237.
  • Rahaiee S, Assadpour E, Faridi Esfanjani A, Silva AS, Jafari SM. 2020. Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interface Sci. 279:102153. doi: 10.1016/j.cis.2020.102153.
  • Rahnama H, Nouri Khorasani S, Aminoroaya A, Molavian MR, Allafchian A, Khalili S. 2021. Facile preparation of chitosan-dopamine-inulin aldehyde hydrogel for drug delivery application. Int J Biol Macromol. 185:716–724. doi: 10.1016/j.ijbiomac.2021.06.199.
  • Rezaei A, Fathi M, Jafari SM. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids. 88:146–162. doi: 10.1016/j.foodhyd.2018.10.003.
  • Saha S, Pramanik K, Biswas A. 2019. Silk fibroin coated TiO2 nanotubes for improved osteogenic property of Ti6Al4V bone implants. Mater Sci Eng C Mater Biol Appl. 105:109982. doi: 10.1016/j.msec.2019.109982.
  • Soni K, Kohli K. 2019. Sulforaphane-decorated gold nanoparticle for anti-cancer activity: in vitro and in vivo studies. Pharm Dev Technol. 24(4):427–438. doi: 10.1080/10837450.2018.1507038.
  • Subedi L, Cho K, Park YU, Choi HJ, Kim SY. 2019. Sulforaphane-enriched broccoli sprouts pretreated by pulsed electric fields reduces neuroinflammation and ameliorates scopolamine-induced amnesia in mouse brain through its antioxidant ability via Nrf2-HO-1 activation. Oxid Med Cell Longev. 2019:3549274–3549219. doi: 10.1155/2019/3549274.
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. 2016. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 99(Pt A):28–51. doi: 10.1016/j.addr.2015.09.012.
  • Tarhini M, Greige-Gerges H, Elaissari A. 2017. Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm. 522(1-2):172–197. doi: 10.1016/j.ijpharm.2017.01.067.
  • Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. 2015. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal. 22(16):1382–1424. doi: 10.1089/ars.2014.6097.
  • Vale A, Santos J, Melia N, Peixoto V, Brito N, Oliveira MBP. 2015. Phytochemical composition and antimicrobial properties of four varieties of Brassica oleracea sprouts. Food Control. 55:248–256. doi: 10.1016/j.foodcont.2015.01.051.
  • Van Eylen D, Oey I, Hendrickx M, Van Loey A. 2007. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. J Agric Food Chem. 55(6):2163–2170. doi: 10.1021/jf062630b.
  • Vicas SI, Cavalu S, Laslo V, Tocai M, Costea TO, Moldovan L. 2019. Growth, photosynthetic pigments, phenolic, glucosinolates content and antioxidant capacity of broccoli sprouts in response to nanoselenium particles supply. Not. Bot. Horti Agrobot. Cluj-Napoca. 47(3):821.
  • Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reátegui E, Parekh HS, Saá P, Stassinopoulos A, Broom MF. 2017. High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci Rep. 7(1):17479. doi: 10.1038/s41598-017-14981-x.
  • Wan B, Andhariya JV, Bao Q, Wang Y, Zou Y, Burgess DJ. 2021. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharm. 607:120907. doi: 10.1016/j.ijpharm.2021.120907.
  • Wang H, Liang H, Yuan QP, Wang TX. 2011. A novel pH-sensitive microsphere composed of CM-chitosan and alginate for sulforaphane delivery. Mater Sci Forum. 687:539–547. doi: 10.4028/www.scientific.net/MSF.687.539.
  • Wang L, Rose D, Rao P, Zhang Y. 2020. Development of prolamin-based composite nanoparticles for controlled release of sulforaphane. J Agric Food Chem. 68(46):13083–13092. doi: 10.1021/acs.jafc.9b06970.
  • Wongpinyochit T, Uhlmann P, Urquhart AJ, Seib FP. 2015. PEGylated silk nanoparticles for anticancer drug delivery. Biomacromolecules. 16(11):3712–3722. doi: 10.1021/acs.biomac.5b01003.
  • Zamani M, Aghajanzadeh M, Rostamizadeh K, Manjili HK, Fridoni M, Danafar H. 2019. In vivo study of poly (ethylene glycol)-poly (caprolactone)-modified folic acid nanocarriers as a pH responsive system for tumor-targeted co-delivery of tamoxifen and quercetin. J Drug Delivery Sci Technol. 54:101283. doi: 10.1016/j.jddst.2019.101283.
  • Zhang L, Zhang Y, Du Y, Wang J, Chi L. 2020. RETRACTED: development of curcumin-loaded silk fibroin nanoparticles as drug delivery vehicle for the treatment of ischemic stroke for patients in nursing care in hospitals. New York: Elsevier.
  • Zhang M, Zhu J, Zheng Y, Guo R, Wang S, Mignani S, Caminade AM, Majoral JP, Shi X. 2018. Doxorubicin-conjugated PAMAM dendrimers for pH-responsive drug release and folic acid-targeted cancer therapy. Pharmaceutics. 10(3):162. doi: 10.3390/pharmaceutics10030162.
  • Zhou J, Zhang B, Shi L, Zhong J, Zhu J, Yan J, Wang P, Cao C, He D. 2014. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. ACS Appl Mater Interfaces. 6(24):21813–21821. doi: 10.1021/am502278b.
  • Zhou S, Li Y, Cui F, Jia M, Yang X, Wang Y, Xie L, Zhang Q, Hou Z. 2014. Development of multifunctional folate-poly (ethylene glycol)-chitosan-coated Fe3O4 nanoparticles for biomedical applications. Macromol Res. 22(1):58–66. doi: 10.1007/s13233-014-2008-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.