45
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development and characterization of magnetic hydrogels loaded with greenly synthesized iron-oxide nanoparticles conjugated with cisplatin

, ORCID Icon & ORCID Icon
Pages 383-392 | Received 27 Sep 2023, Accepted 05 Apr 2024, Published online: 15 Apr 2024

References

  • Abd El-Rehim HA, El-Sawy NM, Hegazy ESA, Soliman ESA, Elbarbary AM. 2012. Improvement of antioxidant activity of chitosan by chemical treatment and ionizing radiation. Int J Biol Macromol. 50(2):403–413. doi: 10.1016/J.IJBIOMAC.2011.12.021.
  • Abu-Huwaij R, Abbas MM, Al-Shalabi R, Almasri FN. 2022 Synthesis of transdermal patches loaded with greenly synthesized zinc oxide nanoparticles and their cytotoxic activity against triple negative breast cancer. Appl Nanosci. 12(1):69–78. doi: 10.1007/s13204-021-02166-y.
  • Abu-Huwaij R, Al-Assaf SF, Hamed R. 2022. Recent exploration of nanoemulsions for drugs and cosmeceuticals delivery. J Cosmet Dermatol. 21(9):3729–3740. doi: 10.1111/jocd.14704.
  • Abu-Rumman A, Abu-Huwaij R, Hamed R. 2020. Development and in vitro appraisal of Soluplus and/or Carbopol 971 buccoadhesive patches releasing atorvastatin. J Adhes. 98(7):915–933. doi: 10.1080/00218464.2020.1864337.
  • Alessa O, Najla S, Murshed R. 2017. Improvement of yield and quality of two Spinacia oleracea L. varieties by using different fertilizing approaches. Physiol Mol Biol Plants. 23(3):693–702. doi: 10.1007/s12298-017-0453-8.
  • Aliasghari A, Khorasgani MR, Vaezifar S, Rahimi F, Younesi H, Khoroushi M. 2016. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: an in vitro study. Iran J Microbiol. 8(2):93–100. 10.5281/zenodo.3342597.
  • Al-Shalabi R, Abu-Huwaij R, Hamed R, Abbas MM. 2022. The antimicrobial and the antiproliferative effect of human triple negative breast cancer cells using the greenly synthesized iron oxide nanoparticles. J Drug Delivery Sci Technol. 75:103642–101773. ISSN volume 2247. doi: 10.1016/j.jddst.2022.103642.
  • Banerjee S, Bhattacharya S. 2012. Food gels: gelling process and new applications. Crit Rev Food Sci Nutr. 52(4):334–346. doi: 10.1080/10408398.2010.500234.
  • Baran A, Fırat Baran M, Keskin C, Hatipoğlu A, Yavuz Ö, İrtegün Kandemir S, Adican MT, Khalilov R, Mammadova A, Ahmadian E, et al. 2022. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front Bioeng Biotechnol. 10:855136. doi: 10.3389/fbioe.2022.855136.
  • Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. 2007. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 127(7):1701–1712. doi: 10.1038/SJ.JID.5700733.
  • Barta JA, Powell CA, Wisnivesky JP. 2019. Global epidemiology of lung cancer. Ann Glob Health. 85(1):8. doi: 10.5334/aogh.2419.
  • Carlos S, Ronald L, Nicholas K. 2015. Nonadditivity of nanoparticle interactions. Science. 350(6257):1242477. doi: 10.1126/science.1242477.
  • Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A. 2000. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 21(21):2155–2161. 375H doi: 10.1016/S0142-9612(00)00116-2.
  • Dadashi H, Eskandani M, Roshangar L, Sharifi-Azad M, Shahpouri M, Cho W, Jahanban-Esfahlan R. 2023. Remotely-controlled hydrogel platforms for recurrent cancer therapy. J Drug Delivery Sci Technol. 82:104354–102247. ISSN volume 1773. doi: 10.1016/j.jddst.2023.104354.
  • Davies NM, Farr SJ, Hadgraft J, Kellaway IW. 1991. Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm Res. 8(8):1039–1043. doi: 10.1023/A:1015813225804.
  • Demirezen AD, Yıldız YŞ, Yılmaz Ş, Demirezen YD. 2019. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J Biosci Bioeng. 127(2):241–245. doi: 10.1016/j.jbiosc.2018.07.024.
  • Ghosh S. 2019. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 88:102925. doi: 10.1016/j.bioorg.2019.102925.
  • Gunashova GY. 2022. Synthesis of silver nanoparticles using a thermophilic bacterium strain isolated from the spring Yukhari istisu of the Kalbajar region (Azerbaijan). Adv Biol Earth Sci. 7(3):198–204.
  • Gupta S, Vyas SP. 2010. Oct-Dec Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm. 78(4):959–976. doi: 10.3797/scipharm.1001-06.
  • Hamed R, AbuRezeq A, Tarawneh O. 2018. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev Ind Pharm. 44(9):1488–1497. doi: 10.1080/03639045.2018.1464021.
  • Hamed R, Al Baraghthi T, Sunoqrot S. 2018. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release. Pharm Dev Technol. 23(9):838–848. doi: 10.1080/10837450.2016.1257022.
  • Hamed R, Obeid RZ, Abu-Huwaij R. 2023. Plant mediated-green synthesis of zinc oxide nanoparticles: an insight into biomedical applications. Nanotechnology Reviews. 12:20230112. doi: 10.1515/ntrev-2023-0112.
  • Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH. 2011. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci. 36Iss(12):1697–1753. doi: 10.1016/j.progpolymsci.2011.02.002.
  • Islam MT, Rodríguez-Hornedo N, Ciotti S, Ackermann C. 2004. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res. 21(7):1192–1199. doi: 10.1023/B:PHAM.0000033006.11619.07.
  • Jiang Y, Wang Y, Li Q, Yu C, Chu W. 2020. Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem. 27(16):2631–2657. doi: 10.2174/0929867326666191122144916.
  • Jones DS, Woolfson A, Brown AF, Coulter WA, McClelland C, Irwin CR. 2000. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Controlled Release. 67(2-3):357–368. www.elsevier.com/locate/jconrel. doi: 10.1016/S0168-3659(00)00231-5.
  • Karami P, Othman G, Housein Z, Salihi A, Hosseinpour Feizi MA, Azeez HJ, Babaei E. 2022. May 3 Nanoformulation of polyphenol curcumin enhances cisplatin-induced apoptosis in drug-resistant MDA-MB-231 breast cancer cells. Molecules. 27(9):2917. doi: 10.3390/molecules27092917.
  • Kass LE, Nguyen J. 2022. Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 14(2):e1756. doi: 10.1002/wnan.1756.
  • Ko SH, Park JH, Kim SY, Lee SW, Chun SS, Park E. 2014. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev Nutr Food Sci. 19(1):19–26. doi: 10.3746/pnf.2014.19.1.019.
  • Kumar H, Akash K, Bhardwaj K, Taneja A, Singh S, Manickam S, Valko M, Kuča K. 2022. Applications of metallic nanoparticles in lung cancer treatment. In: Interdisciplinary cancer research. Cham: Springer. Published 07 November 2022. doi: 10.1007/16833_2022_51.
  • Lan X, She J, Lin DA, Xu Y, Li X, Yang WF, Lui VWY, Jin L, Xie X, Su YX. 2018. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl Mater Interfaces. 10(39):33060–33069. doi: 10.1021/acsami.8b12926.
  • Lee MH, Chun MK, Choi HK. 2008. Preparation of Carbopol/chitosan interpolymer complex as a controlled release tablet matrix; effect of complex formation medium on drug release characteristics. Arch Pharm Res. 31(7):932–937. doi: 10.1007/s12272-001-1249-7.
  • Li Y, Zhang H. 2019. Nanoparticle-based drug delivery systems for enhanced tumor-targeting treatment. J Biomed Nanotechnol. 15(1):1–27. doi: 10.1166/jbn.2019.2670.
  • Likavčan L, Košík M, Bílik J, Martinkovič M. 2014. Determination of apparent viscosity as function of shear rate and fibres fraction in polypropylene. Int J Eng Innovat Technol (IJEIT). 4(5):23–26.
  • Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. 2022b. Injectable hydrogel as a unique platform for antitumor therapy targeting immunosuppressive tumor microenvironment. Front Immunol. 12:832942. doi: 10.3389/fimmu.2021.832942.
  • Loo H, Goh BH, Lee L, Chuah LH. 2022. Application of chitosan-based nanoparticles in skin wound healing. Asian J Pharm Sci. 17(3):299–332. ISSN 18180876. doi: 10.1016/j.ajps.2022.04.001.
  • Mahdi B, Abu-Huwaij R, Al-Khateeb I. 2022. Development of topical patches releasing allicin using garlic extract. J Cosmet Dermatol. 21(1):396–402. doi: 10.1111/jocd.14553.
  • Mahmoud NN, Sabbah DA, Abu-Dahab R, Abuarqoub D, Abdallah M, Hasan Ibrahim A, Khalil EA. 2019. Cholesterol-coated gold nanorods as an efficient nano-carrier for chemotherapeutic delivery and potential treatment of breast cancer: in vitro studies using the MCF-7 cell line. RSC Adv. 9(22):12718–12731. DOI doi: 10.1039/C9RA01041F.
  • Manohar S, Leung N. 2018. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 31(1):15–25. doi: 10.1007/s40620-017-0392-z.
  • Mehdizadeh A, Somi MH, Darabi M, Farajnia S, Akbarzadeh A, Montazersaheb S, Yousefi M, Bonyadi M. 2017. Liposome-mediated RNA interference delivery against Erk1 and Erk2 does not equally promote chemosensitivity in human hepatocellular carcinoma cell line HepG2. Artif Cells Nanomed Biotechnol. 45(8):1612–1619. doi: 10.1080/21691401.2016.1269117.
  • Miatmoko A. 2015. Evaluation of transfersome and protransfersome for percutaneous delivery of cisplatin in hairless mice. J Pharmaceut Pharmacol. 7:1–9. https://www.researchgate.net/publication/280096241.
  • Miatmoko A. 2020. Physical characterization and biodistribution of cisplatin loaded in surfactant modified-hybrid nanoparticles using polyethylene oxide-b-polymethacrylic acid. Adv Pharm Bull. 11(4):765–771. doi: 10.34172/apb.2021.086.
  • Mok H, Zhang M. 2013. Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv. 10(1):73–87. doi: 10.1517/17425247.2013.747507.
  • Morovati A, Ahmadian S, Jafary H. 2019. Cytotoxic effects and apoptosis induction of cisplatin-loaded iron oxide nanoparticles modified with chitosan in human breast cancer cells. Mol Biol Rep. 46(5):5033–5039. doi: 10.1007/s11033-019-04954-w.
  • Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. 2018. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis. 35(4):309–318. doi: 10.1007/s10585-018-9903-0.
  • Pan A, Roy SG, Haldar U, Mahapatra RD, Harper GR, Low WL, De P, Hardy JG. 2019. Uptake and release of species from carbohydrate containing organogels and hydrogels. Gels. 5(4):43. doi: 10.3390/gels5040043.
  • Patel AR, Cludts N, Sintang MD, Lesaffer A, Dewettinck K. 2014. Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct. 5(11):2833–2841. doi: 10.1039/c4fo00624k.
  • Poodat M, Divsalar A, Ghalandari B, Khavarinezhad R. 2023. A new nano-delivery system for cisplatin using green-synthesized iron oxide nanoparticles. J Iran Chem Soc. 20(3):739–750. doi: 10.1007/s13738-022-02706-5.
  • Qi Y, Qian Z, Yuan W, Li Z. 2021. Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy. J Mater Chem B. 9(47):9734–9743. doi: 10.1039/d1tb01753e.
  • Qin C, Du Y, Xiao L, Liu Y, Yu H. 2002. Moisture retention and antibacterial activity of modified chitosan by hydrogen peroxide. J Appl Polym Sci. 86(7):1724–1730. doi: 10.1002/app.11080.
  • Rudraraju VS, Wyandt CM. 2005. Rheology of microcrystalline cellulose and sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: Part II. Int J Pharm. 292(1-2):63–73. doi: 10.1016/j.ijpharm.2004.10.012.
  • Sakulwech S, Lourith N, Ruktanonchai U, Kanlayavattanakul M. 2018. Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J Pharm Sci. 13(5):498–504. doi: 10.1016/J.AJPS.2018.05.006.
  • Saranya S, Vijayarani K, Pavithra S. 2017. Green synthesis of iron nanoparticles using aqueous extract of Musa ornata flower sheath against pathogenic bacteria. Pharmaceut Sci. 79(5):688–694. doi: 10.4172/pharmaceutical-sciences.1000280.
  • Sharma AK, Pawar CA, Prasad NR, Yewale MA, Kamble DB. 2018. Antimicrobial efficacy of green synthesized iron oxide nanoparticles. Mater Res Express. 5(7):075402. doi: 10.1088/2053-1591/aacf16.
  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. 2017. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 17(1):20–37. doi: 10.1038/nrc.2016.108.
  • Singla AK, Chawla M, Singh A. 2000. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm. 26(9):913–924. doi: 10.1081/DDC-100101318.
  • Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. 2020. Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev. 163-164:65–83. doi: 10.1016/j.addr.2020.06.025.
  • Sundralingam U, Khan TM, Elendran S, Muniyandy S, Palanisamy UD. 2019. Review: patient-controlled transdermal 4-hydroxytamoxifen (4-OHT) vs. oral tamoxifen: a systematic review and meta analysis. Pak J Pharm Sci. 32(3):1121–1128.
  • Taberner ST, Martín-Villodre A, Pla-Delfina JM, Herráez JV. 2002. Feb 21 Consistency of Carbopol 971-P NF gels and influence of soluble and cross-linked PVP. Int J Pharm. 233(1-2):43–50. doi: 10.1016/s0378-5173(01)00937-1.
  • Tan B, Huang L, Wu Y, Liao J. 2021. Advances and trends of hydrogel therapy platform in localized tumor treatment: a review. J Biomed Mater Res A. 109(4):404–425. doi: 10.1002/jbm.a.37062.
  • Wu W, He Q, Jiang C. 2008. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 3(11):397. doi: 10.1007/s11671-008-9174-9.
  • Xue W, Liu Y, Zhang N, Yao Y, Ma P, Wen H, Huang S, Luo Y, Fan H. 2018. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomed. 13:5719–5731. doi: 10.2147/IJN.S165451.
  • You D, Chen G, Liu C, Ye X, Wang S, Dong M, Sun M, He J, Yu X, Ye G, et al. 2021. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv Funct Materials. 31(40):2103920. doi: 10.1002/adfm.202103920.
  • Yu-Linag L, Chien-Chung L, Shin-Ru H, Shiow-Kang Y. 2018. Electrochemical deposition of cisplatin on pure magnesium. J Electrochem Soc. 165(5):D196–D205. doi: 10.1149/2.0501805jes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.