491
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture

, , , , , , , , , , , , , , , , , & show all
Pages 395-414 | Received 08 Feb 2024, Accepted 10 Apr 2024, Published online: 06 May 2024

References

  • Abreu-Villela R, Kuentz M, Caraballo I. 2019. Benefits of fractal approaches in solid dosage form development. Pharm Res. 36(11):156. doi: 10.1007/s11095-019-2685-5.
  • Allenspach C, Timmins P, Lumay G, Holman J, Minko T. 2021. Loss-in-weight feeding, powder flow and electrostatic evaluation for direct compression hydroxypropyl methylcellulose (HPMC) to support continuous manufacturing. Int J Pharm. 596:120259. doi: 10.1016/j.ijpharm.2021.120259.
  • Arndt OR, Kleinebudde P. 2018. Towards a better understanding of dry binder functionality. Int J Pharm. 552(1–2):258–264. doi: 10.1016/j.ijpharm.2018.10.007.
  • ASTM. 2014. Standard E55, E29648–14 Standard Guide for Application of Continuous Pro- cessing in the Pharmaceutical Industry. West Conshohocken, PA: ASTM International;
  • Bano G, Dhenge RM, Diab S, Goodwin DJ, Gorringe L, Ahmed M, Elkes R, Zomer S. 2022. Streamlining the development of an industrial dry granulation process for an immediate release tablet with systems modelling. Chem Engin Res Design. 178:421–437. doi: 10.1016/j.cherd.2021.12.033.
  • Barjat H, Checkley S, Chitu T, Dawson N, Farshchi A, Ferreira A, Gamble J, Leane M, Mitchell A, Morris C, et al. 2021. Demonstration of the feasibility of predicting the flow of pharmaceutically relevant powders from particle and bulk physical properties. J Pharm Innov. 16(1):181–196. doi: 10.1007/s12247-020-09433-5.
  • Batra A, Desai D, Serajuddin AM. 2020. Conversion of alpha-lactose monohydrate to anhydrous form with superior tabletability by twin-screw extrusion at elevated temperature. Int J Pharm. 588:119790. doi: 10.1016/j.ijpharm.2020.119790.
  • Batra A, Desai D, Serajuddin ATM. 2017. Investigating the use of polymeric binders in twin screw melt granulation process for improving compactibility of drugs. J Pharm Sci. 106(1):140–150. doi: 10.1016/j.xphs.2016.07.014.
  • Batra A, Thongsukmak A, Desai D, Serajuddin AT. 2021. The effect of process variables and binder concentration on tabletability of metformin hydrochloride and acetaminophen granules produced by twin screw melt granulation with different polymeric binders. AAPS PharmSciTech. 22(4):154. doi: 10.1208/s12249-021-02018-6.
  • Bautista M, Maurer R, Rolinger L, Gavi E, Piccione PM. 2022. Mini-batch continuous direct compression: overview and control strategy insights. Am Pharmaceutical Rev:46–53.
  • Bekaert B, Van Snick B, Pandelaere K, Dhondt J, Di Pretoro G, De Beer T, Vervaet C, Vanhoorne V. 2022. Continuous direct compression: development of an empirical predictive model and challenges regarding PAT implementation. Int J Pharm X. 4:100110. doi: 10.1016/j.ijpx.2021.100110.
  • Berkenkemper S, Keizer HL, Lindenberg M, Szepes A, Kleinebudde P. 2020. Functionality of disintegrants with different mechanisms after roll compaction. Int J Pharm. 584:119434. doi: 10.1016/j.ijpharm.2020.119434.
  • Bhalode P, Razavi SM, Roman-Ospino A, Scicolone J, Callegari G, Tian G, Koolivand A, Krull S, Ierapetritou MG, Muzzio FJ. 2023. Optimal quantification of residence time distribution profiles from a quality assurance perspective. Int J Pharm. 634:122653. doi: 10.1016/j.ijpharm.2023.122653.
  • Bryant MJ, Rosbottom I, Bruno IJ, Docherty R, Edge CM, Hammond RB, Peeling R, Pickering J, Roberts KJ, Maloney AGP. 2019. Particle informatics: advancing our understanding of particle properties through digital design. Crystal Growth & Design. 19(9):5258–5266. doi: 10.1021/acs.cgd.9b00654.
  • Cho CH, Kim JY, Park ES. 2020. Systematic approach to elucidate compaction behavior of acyclovir using a compaction simulator. Int J Pharm. 575:118904. doi: 10.1016/j.ijpharm.2019.118904.
  • Conceição J, Adeoye O, Cabral-Marques HM, Sousa Lobo JM. 2018. Hydroxypropyl-beta-cyclodextrin and beta-cyclodextrin as tablet fillers for direct compression. Aaps Pharmscitech. 19(6):2710–2718. doi: 10.1208/s12249-018-1115-z.
  • Dai S, Xu B, Shi G, Liu J, Zhang Z, Shi X, Qiao Y. 2019. SeDeM expert system for directly compressed tablet formulation: a review and new perspectives. Powder Technol. 342:517–527. doi: 10.1016/j.powtec.2018.10.027.
  • Destro F, Muñoz SG, Bezzo F, Barolo M. 2021. Powder composition monitoring in continuous pharmaceutical solid-dosage form manufacturing using state estimation–Proof of concept. Int J Pharm. 605:120808. doi: 10.1016/j.ijpharm.2021.120808.
  • Doktorovová S, Stone EH, Henriques J. 2022. A fundamental study on compression properties and strain rate sensitivity of spray-dried amorphous solid dispersions. Aaps Pharmscitech. 23(4):96. doi: 10.1208/s12249-022-02248-2.
  • Elezaj V, Lura A, Canha L, Breitkreutz J. 2022. Pharmaceutical development of film-coated mini-tablets with losartan potassium for epidermolysis bullosa. Pharmaceutics. 14(3):570. doi: 10.3390/pharmaceutics14030570.
  • Engisch W, Muzzio F. 2016. Using residence time distributions (RTDs) to address the traceability of raw materials in continuous pharmaceutical manufacturing. J Pharm Innov. 11(1):64–81. doi: 10.1007/s12247-015-9238-1.
  • Engisch WE, Muzzio FJ. 2015. Loss-in-weight feeding trials case study: pharmaceutical formulation. J Pharm Innov. 10(1):56–75. doi: 10.1007/s12247-014-9206-1.
  • Erdemir D, Daftary V, Lindrud M, Buckley D, Lane G, Malsbury A, Tao J, Kopp N, Hsieh DS, Nikitczuk W, et al. 2019. Design and scale-up of a co-processing technology to improve powder properties of drug substances. Org Process Res Dev. 23(12):2685–2698. doi: 10.1021/acs.oprd.9b00354.
  • Ervasti T, Niinikoski H, Mäki-Lohiluoma E, Leppinen H, Ketolainen J, Korhonen O, Lakio S. 2020. The comparison of two challenging low dose APIs in a continuous direct compression process. Pharmaceutics. 12(3):279. doi: 10.3390/pharmaceutics12030279.
  • Ferreira AP, Gamble JF, Leane MM, Park H, Olusanmi D, Tobyn M. 2018. Enhanced understanding of pharmaceutical materials through advanced characterisation and analysis. Aaps Pharmscitech. 19(8):3462–3480. doi: 10.1208/s12249-018-1198-6.
  • Ferreira AP, Rawlinson-Malone CF, Gamble J, Nicholson S, Tobyn M. 2018. Applications of multivariate analysis to monitor and predict pharmaceutical materials properties. In: Ferreira AP, Menezes JC, Tobyn M, editors. Multivariate analysis in the pharmaceutical industry; Academic Press, p. 235–267.
  • Fridgeirsdottir GA, Harris R, Fischer PM, Roberts CJ. 2016. Support tools in formulation development for poorly soluble drugs. J Pharm Sci. 105(8):2260–2269. doi: 10.1016/j.xphs.2016.05.024.
  • Gamble JF, Akseli I, Ferreira AP, Leane M, Thomas S, Tobyn M, Wadams RC. 2023. Morphological distribution mapping: utilisation of modelling to integrate particle size and shape distributions. Int J Pharm. 635:122743. doi: 10.1016/j.ijpharm.2023.122743.
  • Gamble JF, Dennis AB, Hutchins P, Jones JW, Musembi P, Tobyn M. 2017. Determination of process variables affecting drug particle attrition withinmulti-component blends during powder feed transmission. Pharm Dev Technol. 22(7):904–909. doi: 10.1080/10837450.2016.1200616.
  • Gao Y, Vanarase A, Muzzio F, Ierapetritou M. 2011. Characterizing continuous powder mixing using residence time distribution. Chem Eng Sci. 66(3):417–425. doi: 10.1016/j.ces.2010.10.045.
  • Ghazi N, Liu Z, Bhatt C, Kiang S, Cuitino A. 2019. Investigating the effect of APAP crystals on tablet behavior manufactured by direct compression. Aaps Pharmscitech. 20(5):168. doi: 10.1208/s12249-019-1369-0.
  • Grote S, Kleinebudde P. 2018. Impact of functionalized particle structure on roll compaction/dry granulation and tableting of calcium carbonate. Int J Pharm. 544(1):235–241. doi: 10.1016/j.ijpharm.2018.04.044.
  • Grote S, Kleinebudde P. 2018. Roll compaction/dry granulation of dibasic calcium phosphate anhydrous-does the morphology of the raw material influence the tabletability of dry granules? J Pharm Sci. 107(4):1104–1111. doi: 10.1016/j.xphs.2017.12.003.
  • Grote S, Kleinebudde P. 2019. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation. Pharmac Devel Technol. 24(3):314–322. doi: 10.1080/10837450.2018.1476977.
  • Hamidi FWA, Anuar MS, Baharuddin AS, Mohamed MAP, Naim MN, Tahir SM. 2019. Compaction behaviour and mechanical characteristics of chewable binary tablet mixture containing lactose and date powders. Int J Res Pharmac Sci. 10:3385–3391.
  • Hanson J. 2018. Control of a system of loss-in-weight feeders for drug product continuous manufacturing. Powder Technol. 331:236–243. doi: 10.1016/j.powtec.2018.03.027.
  • Hayashi Y, Nakano Y, Marumo Y, Kumada S, Okada K, Onuki Y. 2021. Application of machine learning to a material library for modeling of relationships between material properties and tablet properties. Int J Pharm. 609:121158. doi: 10.1016/j.ijpharm.2021.121158.
  • Hayashi Y, Oishi T, Shirotori K, Marumo Y, Kosugi A, Kumada S, Hirai D, Takayama K, Onuki Y. 2018. Modeling of quantitative relationships between physicochemical properties of active pharmaceutical ingredients and tensile strength of tablets using a boosted tree. Drug Dev Ind Pharm. 44(7):1090–1098. doi: 10.1080/03639045.2018.1434195.
  • Hirschberg C, Sun CC, Rantanen J. 2016. Analytical method development for powder characterization: visualization of the critical drug loading affecting the processability of a formulation for direct compression. J Pharm Biomed Anal. 128:462–468. doi: 10.1016/j.jpba.2016.06.014.
  • Holman J, Tantuccio A, Palmer J, van Doninck T, Meyer R. 2021. A very boring 120 h: 15 million tablets under a continuous state of control. Powder Technol. 382:208–231. doi: 10.1016/j.powtec.2020.12.073.
  • Hörmann-Kincses TR, Beretta M, Kruisz J, Stauffer F, Birk G, Piccione PM, Holman J, Khinast JG. 2022. Predicting powder feedability: a workflow for assessing the risk of flow stagnation and defining the operating space for different powder-feeder combinations. Int J Pharm. 629:122364. doi: 10.1016/j.ijpharm.2022.122364.
  • Hurley S, Tantuccio A, Escotet-Espinoza MS, Flamm M, Metzger M. 2022. Development and use of a residence time distribution (RTD) model control strategy for a continuous manufacturing drug product pharmaceutical process. Pharmaceutics. 14(2):355. doi: 10.3390/pharmaceutics14020355.
  • Hwang KM, Kim SY, Nguyen TT, Cho CH, Park ES. 2019. Use of roller compaction and fines recycling process in the preparation of erlotinib hydrochloride tablets. Eur J Pharm Sci. 131:99–110. doi: 10.1016/j.ejps.2019.01.036.
  • ICH. 2022. International Council for Harmonization of technical requirements for pharmaceuticals for human use. Continuous manufacturing of drug substances and drug products Q13. ICH. https://database.ich.org/sites/default/files/ICH_Q13_Step4_Guideline_2022_1116.pdf.
  • ISPE good practice guide: continuous manufacturing of oral solid dosage forms. Chapter 2: material handling. 2023. Wiley. https://ispe.org/publications/guidance-documents/good-practice-guide-continuous-manufacturing-oral-solid-dosage-forms2022.
  • Jakubowska E, Ciepluch N. 2021. Blend segregation in tablets manufacturing and its effect on drug content uniformity—a review. Pharmaceutics. 13(11):1909. doi: 10.3390/pharmaceutics13111909.
  • Jaspers M, Kulkarni SS, Tegel F, Roelofs TP, de Wit MT, Janssen PH, Meir B, Weinekötter R, Dickhoff BH. 2022. Batch versus continuous blending of binary and ternary pharmaceutical powder mixtures. Int J Pharm X. 4:100111. doi: 10.1016/j.ijpx.2021.100111.
  • Jenike AW. 1964. Storage and flow of solids. Bulletin No 123. Logan, UT: Utah State University.
  • Junnila A, Wikström H, Megarry A, Gholami A, Papathanasiou F, Blomberg A, Ketolainen J, Tajarobi P. 2022. Faster to first-time-in-human: prediction of the liquid solid ratio for continuous wet granulation. Eur J Pharm Sci. 172:106151. doi: 10.1016/j.ejps.2022.106151.
  • Kalaria DR, Parker K, Reynolds GK, Laru J. 2020. An industrial approach towards solid dosage development for first-in-human studies: application of predictive science and lean principles. Drug Discov Today. 25(3):505–518. doi: 10.1016/j.drudis.2019.12.012.
  • Karttunen A-P, Hörmann TR, De Leersnyder F, Ketolainen J, De Beer T, Hsiao W-K, Korhonen O. 2019. Measurement of residence time distributions and material tracking on three continuous manufacturing lines. Int J Pharm. 563:184–197. doi: 10.1016/j.ijpharm.2019.03.058.
  • Karttunen A-P, Wikström H, Tajarobi P, Fransson M, Sparén A, Marucci M, Ketolainen J, Folestad S, Korhonen O, Abrahmsén-Alami S. 2019. Comparison between integrated continuous direct compression line and batch processing - The effect of raw material properties. Eur J Pharm Sci. 133:40–53. doi: 10.1016/j.ejps.2019.03.001.
  • Kleinebudde P. 2022. Improving process understanding in roll compaction. J Pharm Sci. 111(2):552–558. doi: 10.1016/j.xphs.2021.09.024.
  • Kuentz M, Holm R, Elder DP. 2016. Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci. 87:136–163. doi: 10.1016/j.ejps.2015.12.008.
  • Lakio S, Ervasti T, Tajarobi P, Wikström H, Fransson M, Karttunen A-P, Ketolainen J, Folestad S, Abrahmsén-Alami S, Korhonen O. 2017. Provoking an end-to-end continuous direct compression line with raw materials prone to segregation. Eur J Pharm Sci. 109:514–524. doi: 10.1016/j.ejps.2017.09.018.
  • Lavra ZMM, de Medeiros FPM, da Silva RMF, Rosa TA, Sales VDW, Silva L, de Sousa A, de Lima LG, Rolim LA, Neto PJR. 2019. Formulation, development and scale-up of fixed-dose combination tablets containing zidovudine, lamivudine and nevirapine. Curr HIV Res. 17(5):360–367. doi: 10.2174/1570162X17666190927162155.
  • Leane M, Pitt K, Reynolds G, Group MCSW. 2015. A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms. Pharm Dev Technol. 20(1):12–21. doi: 10.3109/10837450.2014.954728.
  • Leane M, Pitt K, Reynolds GK, Dawson N, Ziegler I, Szepes A, Crean AM, Agnol RD, Broegmann B, Charlton ST, Davies C, Gamble J, Gamlen M, Hsiao WK, Khimyak YZ, Khinast J, Kleinebudde P, Moreton C, Oswald M, Page S, Paudel A, Sahoo R, Sheehan S, Stamato H, Stone E, Group MCSW. 2018. Manufacturing classification system in the real world: factors influencing manufacturing process choices for filed commercial oral solid dosage formulations, case studies from industry and considerations for continuous processing. Pharm Dev Technol. 23(10):964–977. doi: 10.1080/10837450.2018.1534863.
  • Leung LY, Mao C, Pieters SR, Yang C-Y. 2019. A proposed complete methodology to predict gravity flow obstruction of pharmaceutical powders in drug product manufacturing. J Pharm Sci. 108(1):464–475. doi: 10.1016/j.xphs.2018.09.014.
  • Liang ZX, Chen HB, Wang CG, Sun CC. 2020. Discovery, characterization, and pharmaceutical applications of two loratadine-oxalic acid cocrystals. Crystals. 10(11):996. doi: 10.3390/cryst10110996.
  • Liu SB, Wang CG, Chen HB, Sun CQC. 2021. Sweet sulfamethazine acesulfamate crystals with improved compaction property. Crystal Growth & Design. 21(2):1077–1085. doi: 10.1021/acs.cgd.0c01395.
  • Lura A, Breitkreutz J. 2022. Manufacturing of mini-tablets. Focus and impact of the tooling systems. J Drug Delivery Sci Technol. 72:103357. doi: 10.1016/j.jddst.2022.103357.
  • Mangal H, Kirsolak M, Kleinebudde P. 2016. Roll compaction/dry granulation: suitability of different binders. Int J Pharm. 503(1–2):213–219. doi: 10.1016/j.ijpharm.2016.03.015.
  • Mangal S, Meiser F, Tan G, Gengenbach T, Morton DAV, Larson I. 2016. Applying surface energy derived cohesive-adhesive balance model in predicting the mixing, flow and compaction behaviour of interactive mixtures. Eur J Pharm Biopharm. 104:110–116. doi: 10.1016/j.ejpb.2016.04.021.
  • Markl D, Zeitler JA. 2017. A review of disintegration mechanisms and measurement techniques. Pharm Res. 34(5):890–917. doi: 10.1007/s11095-017-2129-z.
  • Meena AK, Desai D, Serajuddin A. 2017. Development and optimization of a wet granulation process at elevated temperature for a poorly compactible drug using twin screw extruder for continuous manufacturing. J Pharm Sci. 106(2):589–600. doi: 10.1016/j.xphs.2016.10.020.
  • Megarry AJ, Swainson SME, Roberts RJ, Reynolds GK. 2019. A big data approach to pharmaceutical flow properties. Int J Pharm. 555:337–345. doi: 10.1016/j.ijpharm.2018.11.059.
  • Monaco D, Omar C, Reynolds GK, Tajarobi P, Litster JD, Salman AD. 2021. Drying in a continuous wet granulation line: investigation of different end of drying control methods. Powder Technol. 392:157–166. doi: 10.1016/j.powtec.2021.07.004.
  • Morrison H, Osan R, Horstman E, Lee E, Ritchie S, Payne P, Scott ME, Geier MJ, Wang XT. 2021. Correlation of drug substance bulk properties to predict and troubleshoot the formulation of drug products: the API camera. Org Process Res Dev. 25(4):1036–1046. doi: 10.1021/acs.oprd.1c00043.
  • Moseson DE, Eren A, Altman KJ, Corum ID, Li MY, Su YC, Nagy ZK, Taylor LS. 2022. Optimization of amorphization kinetics during hot melt extrusion by particle engineering: an experimental and computational study. Crystal Growth & Design. 22(1):821–841. doi: 10.1021/acs.cgd.1c01306.
  • Nalluri VR, Puchkov M, Kuentz M. 2013. Toward better understanding of powder avalanching and shear cell parameters of drug–excipient blends to design minimal weight variability into pharmaceutical capsules. Int J Pharm. 442(1–2):49–56. doi: 10.1016/j.ijpharm.2012.08.010.
  • Nasr MM, Krumme M, Matsuda Y, Trout BL, Badman C, Mascia S, Cooney CL, Jensen KD, Florence A, Johnston C, et al. 2017. Regulatory perspectives on continuous pharmaceutical manufacturing: moving from theory to practice: September 26-27, 2016, international symposium on the continuous manufacturing of pharmaceuticals. J Pharm Sci. 106(11):3199–3206. doi: 10.1016/j.xphs.2017.06.015.
  • Nauka Ewa, Maurer R, Gonzalez AA, Zhang Wei, Narang AS, Mao C. 2021. Theoretical and experimental evaluation of flow pattern of pharmaceutical powder blends discharged from intermediate bulk containers (IBCs). J Pharm Sci. 110(3):1172–1181. doi: 10.1016/j.xphs.2020.10.007.
  • Oishi T, Hayashi Y, Noguchi M, Yano F, Kumada S, Takayama K, Okada K, Onuki Y. 2020. Creation of novel large dataset comprising several granulation methods and the prediction of tablet properties from critical material attributes and critical process parameters using regularized linear regression models including interaction terms. Int J Pharm. 577:119083. doi: 10.1016/j.ijpharm.2020.119083.
  • Oka S, Sahay A, Meng W, Muzzio F. 2017. Diminished segregation in continuous powder mixing. Powder Technol. 309:79–88. doi: 10.1016/j.powtec.2016.11.038.
  • Orubu ESF, Tuleu C. 2017. Medicines for children: flexible solid oral formulations. Bull World Health Organ. 95(3):238–240. doi: 10.2471/BLT.16.171967.
  • Peddapatla RVG, Sheridan G, Slevin C, Swaminathan S, Browning I, O’Reilly C, Worku ZA, Egan D, Sheehan S, Crean AM. 2021. Process model approach to predict tablet weight variability for direct compression formulations at pilot and production scale. Pharmaceutics. 13(7):1033. doi: 10.3390/pharmaceutics13071033.
  • Peddapatla RVG, Slevin C, Sheridan G, Beirne C, Swaminathan S, Browning I, O’Reilly C, Worku ZA, Egan D, Sheehan S, et al. 2022. Modelling the compaction step of a platform direct compression process. Pharmaceutics. 14(4):695. doi: 10.3390/pharmaceutics14040695.
  • Persson AS, Pazesh S, Alderborn G. 2022. Tabletability and compactibility of alpha-lactose monohydrate powders of different particle size. I. Experimental comparison. Pharm Dev Technol. 27(3):319–330. doi: 10.1080/10837450.2022.2051550.
  • Pippa N, Dokoumetzidis A, Demetzos C, Macheras P. 2013. On the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences: a review. Int J Pharm. 456(2):340–352. doi: 10.1016/j.ijpharm.2013.08.087.
  • Pohl S, Kleinebudde P. 2020. A review of regime maps for granulation. Int J Pharm. 587:119660. doi: 10.1016/j.ijpharm.2020.119660.
  • Pudasaini N, Parker CR, Hagen SU, Bond AD, Rantanen J. 2018. Role of solvent selection on crystal habit of 5-aminosalicylic acid-combined experimental and computational approach. J Pharm Sci. 107(4):1112–1121. doi: 10.1016/j.xphs.2017.12.005.
  • Pudasaini N, Upadhyay PP, Parker CR, Hagen SU, Bond AD, Rantanen J. 2017. Downstream processability of crystal habit-modified active pharmaceutical ingredient. Org Process Res Dev. 21(4):571–577. doi: 10.1021/acs.oprd.6b00434.
  • Queiroz ALP, Faisal W, Devine K, Garvie-Cook H, Vucen S, Crean AM. 2019. The application of percolation threshold theory to predict compaction behaviour of pharmaceutical powder blends. Powder Technol. 354:188–198. doi: 10.1016/j.powtec.2019.05.027.
  • Reynolds G. 2019. Model-based development of roller compaction processes. In: Chemical engineering in the pharmaceutical industry: active pharmaceutical ingredients. 2nd ed.; John Wiley & Sons, Inc. p. 119–145.
  • Roth WJ, Almaya A, Kramer TT, Hofer JD. 2017. A demonstration of mixing robustness in a direct compression continuous manufacturing process. J Pharm Sci. 106(5):1339–1346. doi: 10.1016/j.xphs.2017.01.021.
  • Rowe JM, Charlton ST, McCann RJ. 2017. Development, scalec-up, and optimization of process parameters: roller compaction theory and practice. Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV, editors; Developing Solid Oral Dosage Forms (2nd ed.). Academic Press, p. 869–915.
  • Sauer A, Warashina S, Mishra SM, Lesser I, Kirchhöfer K. 2021. Downstream processing of spray-dried ASD with hypromellose acetate succinate - Roller compaction and subsequent compression into high ASD load tablets. Int J Pharmaceutics-X. 3:100099. doi: 10.1016/j.ijpx.2021.100099.
  • Schaller BE, Moroney KM, Castro-Dominguez B, Cronin P, Belen-Girona J, Ruane P, Croker DM, Walker GM. 2019. Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API: A case study. Int J Pharm. 566:615–630. doi: 10.1016/j.ijpharm.2019.05.073.
  • Sierra-Vega NO, Romañach RJ, Méndez R. 2019. Feed frame: the last processing step before the tablet compaction in pharmaceutical manufacturing. Int J Pharm. 572:118728. doi: 10.1016/j.ijpharm.2019.118728.
  • Simonaho S-P, Ketolainen J, Ervasti T, Toiviainen M, Korhonen O. 2016. Continuous manufacturing of tablets with PROMIS-line—Introduction and case studies from continuous feeding, blending and tableting. Eur J Pharm Sci. 90:38–46. doi: 10.1016/j.ejps.2016.02.006.
  • Stauffer D, Aharony A. 2018. Introduction to percolation theory. Taylor & Francis.
  • Stauffer F, Vanhoorne V, Pilcer G, Chavez PF, Rome S, Schubert MA, Aerts L, De Beer T. 2018. Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing. Eur J Pharm Biopharm. 127:92–103. doi: 10.1016/j.ejpb.2018.02.017.
  • Steenweg C, Habicht J, Wohlgemuth K. 2022. Continuous isolation of particles with varying aspect ratios up to thin needles achieving free-flowing products. Crystals. 12(2):137. doi: 10.3390/cryst12020137.
  • Suñé-Negre JM, Roig M, Fuster R, Hernández C, Ruhí R, García-Montoya E, Pérez-Lozano P, Miñarro M, Ticó JR. 2014. New classification of directly compressible (DC) excipients in function of the SeDeM Diagarm Expert System. Int J Pharm. 470(1-2):15–27. doi: 10.1016/j.ijpharm.2014.04.068.
  • Tahir F, Palmer J, Khoo J, Holman J, Yadav IK, Reynolds G, Meehan E, Mitchell A, Bajwa G. 2020. Development of feed factor prediction models for loss-in-weight powder feeders. Powder Technol. 364:1025–1038. doi: 10.1016/j.powtec.2019.09.071.
  • Tanner T, Antikainen O, Pollet A, Räikkönen H, Ehlers H, Juppo A, Yliruusi J. 2019. Predicting tablet tensile strength with a model derived from the gravitation-based high-velocity compaction analysis data. Int J Pharm. 566:194–202. doi: 10.1016/j.ijpharm.2019.05.024.
  • Tantuccio A, Hanson, J. Good Practice Guide: Continuous Manufacturing of Oral Solid Dosage Forms, ISPE, Tampa, Florida 2022. p. 25–33. 1 Chapter 3 Feeding and Blending.
  • Tarlier N, Soulairol I, Bataille B, Baylac G, Ravel P, Nofrerias I, Lefèvre P, Sharkawi T. 2015. Compaction behavior and deformation mechanism of directly compressible textured mannitol in a rotary tablet press simulator. Int J Pharm. 495(1):410–419. doi: 10.1016/j.ijpharm.2015.09.007.
  • Tofiq M, Nordström J, Persson A-S, Alderborn G. 2022. Effect of excipient properties and blend ratio on the compression properties of dry granulated particles prepared from microcrystalline cellulose and lactose. Powder Technol. 399:117207. doi: 10.1016/j.powtec.2022.117207.
  • Tran PHL, Lee BJ, Tran TTD. 2021. Strategies and formulations of freeze-dried tablets for controlled drug delivery. Int J Pharm. 597:120373. doi: 10.1016/j.ijpharm.2021.120373.
  • Trementozzi AN, Leung CY, Osei-Yeboah F, Irdam E, Lin YQ, MacPhee JM, Boulas P, Karki SB, Zawaneh PN. 2017. Engineered particles demonstrate improved flow properties at elevated drug loadings for direct compression manufacturing. Int J Pharm. 523(1):133–141. doi: 10.1016/j.ijpharm.2017.03.011.
  • Turner TD, Gajjar P, Fragkopoulos IS, Carr J, Nguyen TTH, Hooper D, Clarke F, Dawson N, Withers PJ, Roberts KJ. 2020. Measuring the particle packing of L-glutamic acid crystals through X-ray computed tomography for understanding powder flow and consolidation behavior. Crystal Growth & Design. 20(7):4252–4263. doi: 10.1021/acs.cgd.9b01515.
  • van den Ban S, Goodwin DJ. 2017. The impact of granule density on tabletting and pharmaceutical product performance. Pharm Res. 34(5):1002–1011. doi: 10.1007/s11095-017-2115-5.
  • Van Snick B, Dhondt J, Pandelaere K, Bertels J, Mertens R, Klingeleers D, Di Pretoro G, Remon JP, Vervaet C, De Beer T, et al. 2018. A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes. Int J Pharm. 549(1–2):415–435. doi: 10.1016/j.ijpharm.2018.08.014.
  • Van Snick B, Holman J, Vanhoorne V, Kumar A, De Beer T, Remon JP, Vervaet C. 2017. Development of a continuous direct compression platform for low-dose drug products. Int J Pharm. 529(1–2):329–346. doi: 10.1016/j.ijpharm.2017.07.003.
  • Vanhoorne V, Vervaet C. 2020. Recent progress in continuous manufacturing of oral solid dosage forms. Int J Pharm. 579:119194. doi: 10.1016/j.ijpharm.2020.119194.
  • Vasiljević I, Turković E, Aleksić I, Parojčić J. 2022. Mathematical approaches for powders and multiparticulate units processability characterization in pharmaceutical development. Archiv Pharmacy. 72(6):637–660. doi: 10.5937/arhfarm72-40961.
  • Vasiljević I, Turković E, Piller M, Zimmer A, Parojčić J. 2021. An investigation into applicability of different compression behaviour assessment approaches for multiparticulate units characterization. Powder Technol. 379:526–536. doi: 10.1016/j.powtec.2020.10.085.
  • Wade JB, Miesle JE, Avilés SL, Sen M. 2020. Exploring the wet granulation growth regime map - validating the boundary between nucleation and induction. Chem Engin Res & Design. 156:469–477. doi: 10.1016/j.cherd.2020.02.024.
  • Wahlich J. 2021. Review: continuous manufacturing of small molecule solid oral dosage forms. Pharmaceutics. 13(8):1311. doi: 10.3390/pharmaceutics13081311.
  • Wang Y, Li T, Muzzio FJ, Glasser BJ. 2017. Predicting feeder performance based on material flow properties. Powder Technol. 308:135–148. doi: 10.1016/j.powtec.2016.12.010.
  • Wang Z, Cao J, Li W, Wang Y, Luo G, Qiao Y, Zhang Y, Xu B. 2021. Using a material database and data fusion method to accelerate the process model development of high shear wet granulation. Sci Rep. 11(1):16514. doi: 10.1038/s41598-021-96097-x.
  • Wenzel T, Stillhart C, Kleinebudde P, Szepes A. 2017. Influence of drug load on dissolution behavior of tablets containing a poorly water-soluble drug: estimation of the percolation threshold. Drug Dev Ind Pharm. 43(8):1265–1275. doi: 10.1080/03639045.2017.1313856.
  • White LR, Molloy M, Shaw RJ, Reynolds GK. 2022. System model driven selection of robust tablet manufacturing processes based on drug loading and formulation physical attributes. Eur J Pharm Sci. 172:106140. doi: 10.1016/j.ejps.2022.106140.
  • Wikström H, Remmelgas J, Solin S, Marucci M, Sandler N, Boissier C, Tajarobi P. 2021. Powder flow from an intermediate bulk container - Discharge predictions and experimental evaluation. Int J Pharm. 597:120309. doi: 10.1016/j.ijpharm.2021.120309.
  • Wilms A, Kleinebudde P. 2021. Optimization of residence time distribution in RCDG and an assessment of its applicability in continuous manufacturing. Particuology. 56:43–49. doi: 10.1016/j.partic.2020.09.009.
  • Wilms A, Teske A, Meier R, Wiedey R, Kleinebudde P. 2022. Implementing feedback granule size control in a continuous dry granulation line using controlled impeller speed of the granulation unit, compaction force and gap width. J Pharm Innov. 17(2):449–459. doi: 10.1007/s12247-020-09524-3.
  • Wilson D, Bunker M, Milne D, Jawor-Baczynska A, Powell A, Blyth J, Streather D. 2018. Particle engineering of needle shaped crystals by wet milling and temperature cycling: optimisation for roller compaction. Powder Technol. 339:641–650. doi: 10.1016/j.powtec.2018.08.023.
  • Yadav IK, Holman J, Meehan E, Tahir F, Khoo J, Taylor J, Benedetti A, Aderinto O, Bajwa G. 2019. Influence of material properties and equipment configuration on loss-in-weight feeder performance for drug product continuous manufacture. Powder Technol. 348:126–137. doi: 10.1016/j.powtec.2019.01.071.
  • Yeom SB, Choi DH. 2019. Scale-up strategy in quality by design approach for pharmaceutical blending process with discrete element method simulation. Pharmaceutics. 11(6):264. doi: 10.3390/pharmaceutics11060264.
  • Zhang S, Stroud PA, Zhu A, Johnson MJ, Lomeo J, Burcham CL, Hinds J, Blakely KA-F, Walworth MJ. 2021. Characterizing the impact of spray dried particle morphology on tablet dissolution using quantitative X-ray microscopy. Eur J Pharm Sci. 165:105921. doi: 10.1016/j.ejps.2021.105921.
  • Zhu A, Mao C, Luner PE, Lomeo J, So C, Marchal S, Zhang S. 2022. Investigation of quantitative X-ray microscopy for assessment of API and excipient microstructure evolution in solid dosage processing. AAPS PharmSciTech. 23(5):117. doi: 10.1208/s12249-022-02271-3.
  • Zieschang L, Klein M, Jung N, Krämer J, Windbergs M. 2019. Formulation development of medicated chewing gum tablets by direct compression using the SeDeM-Diagram-Expert-System. Eur J Pharm Biopharm. 144:68–78. doi: 10.1016/j.ejpb.2019.09.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.